VORGEFERTIGTES ELEMENTSYSTEM IN HOLZ-BETON-VERBUND-RIPPEN-BAUWEISE FÜR ÖFFENTLICHE NUTZUNGEN AM BEISPIEL TYPENKINDERGARTEN

Masterthese

wissenschaftlich-künstlerische Arbeit ausgeführt zum Zwecke der Erlangung des akademischen Grades MASTER OF SCIENCE (MSC) CULTURE TIMBER ARCHITECTURE

Universität für künstlerische und industrielle Gestaltung Kunstuniversität Linz

überholz - Universtitätslehrgang für Holzbaukultur

betreut von

Helmut Dietrich Lehrgangsleiter, Architekt, Dietrich-Untertrifaller, Bregenz-Wien

Veronika Müller Lehrgangsmanagement, Linz

Roland Gnaiger Architekt, Gründer des Universitätslehrgangs, Linz

(weitere Lehrende u.a. siehe Danksagung)

von Irene Prieler

Datum der Approbation:

Unterschrift Betreuer:

Arch. DI Michael Wildmann ZT Arch. DI Irene Prieler staatlich befugter und beeideter Ziviltechniker: 1070 Wien. Kaiserstrasse 85/2/1

. grundstein

ATELIER LINZ: 4020 Linz. Gärtnerstrasse 13/21 ATELIER WIEN: 1160 Wien. Grundsteingasse 14/20

architektur@grundstein.cc | +43 1 524 74 23 | +43 732 26 77 75 | www.grundstein.cc

Inhaltsverzeichnis

7	Abstract
9	Raumprogramm
9	Naumprogramm
15	1_Entwurf
17	Typenentwicklung
23	Elementierung
_	=
29	Entwurf M 1:200
31	Schaubilder
39	Elementierung Entwurf
47	Gebäudekonzepte
	Entfluchtungskonzept
	Nachtlüftungskonzept
55	Materialität
	Aussenraum
	Innenraum
	Fassade
75	2 Detail
75 77	2_Detail
77	Aufbauten
81	Detail M 1:20
91	Möbel als Raumersatz
101	3 Berechnungen
103	Statik
119	Energie
	Energieausweis
	Sommertauglichkeit
	Ökologie
	Vergleich Holz-Beton-Verbund : Brett-Sperr-Holz
	Schall
151	Kostenschätzung
	· ·
173	5_Schlußfolgerung
175	4. Crundlagan
175	4_Grundlagen
177	Kindergarten
227	Holz-Beton-Verbund
237	Referenzbeispiele
243	Transport
247	Entwicklung der Elementierung
259	OIB-Richtlinie u.dgl.
269	5_Anhang
271	Quellennachweis
293	Abkürzungen
293	Software
295	Danksagung
	Nachwort
	- TOCHTY OIL

Pläne u.a.verfügen über keine eigenen Seitenzahlen, jedoch über Deckblatt mit Seitenzahl

grundstein

grundstein ist konzipiert als offenes Kollektiv für kontextuelle Arbeiten an der Schnittstelle zwischen Architektur, angewandtem Urbanismus, Design, Kunst und sozialer Raum - initiiert 2006 von Michael Wildmann und Irene Prieler. So individuell die einzelnen Akteure und Akteurinnen arbeiten, so invidiviuell entstehen Projekte und/oder Lösungen einerseits im Team mit den Auftraggebern und -geberinnen, andererseits im transdisziplinären Austausch oszillierend zwischen den einzelnen künstlerischen, technischen und wissenschaftlichen Disziplinen. Der Anspruch höchstmöglicher Innovation auf allen bearbeiteten Gebieten verbindet die Akteure und Akteurinnen bei der Bearbeitung der Projekte.

Schwerpunkt der Architekturproduktion sind prototypische Projekte in enger Zusammenarbeit mit den Auftraggebern und Auftraggeberinnen auf Basis deren Bestellqualität unter dem Aspekt eines alternativen Nachhaltigkeitsverständnisses; Forschungsprojekte zu aktuellen Architekturfragen bereichern das Oeuvre.

Abstract

Ausgangspunkt dieser wissenschaftlich-künstlerischer Arbeit sind zwei realisierte Projekte des Architekturateliers grundstein, bei welchen Holz-Beton-Verbund-Rippen-Systeme zum Einsatz gekommen sind (siehe Kapitel Grundlagen):

ASO4 Allgemeine Sonderschule 4. Karlhofschule

Aufstockung, Adaptierung, Generalsanierung im Auftrag der Immobilien Linz GmbH – Stadt Linz

Planung:

grundstein im Planungsteam mit Arch. Siegel

Gesamtprojektleitung: Irene Prieler

Planungsbeginn: 2007

Fertigstellung ohne Aussenanlagen: 2009 Fertigstellung mit Aussenanlagen: 2010

ausgezeichnet mit:

Anerkennung – Oberösterreichischer Holzbaupreis 2009 Staatspreis für Architektur und Nachhaltigkeit 2012

Laut den Recherchen von grundstein das erste (öffentliche) Gebäude Österreichs, das unter Verwendung eines Holz-Beton-Verbund-Systems (auf Sicht) erstellt wurde.

Aufbauend auf den Erfahrungen dieser zwei Projekte mit dem System Holz-Beton-Verbund-Rippe will diese wissenschaftlich-künstlerische Arbeit herausfinden, ob und mit welchen Mitteln die verwendeten gestalterischen Mittel:

- HBV-element als Sichtelement
- Dämmschichte
- mehrschaliges Polycarbonat-Lichtelement

übertragen werden können auf die Funktion eines Kindergartens als Gebäude der Öffentlichen Hand.

Die Planung erfolgt als Ty-

penkindergarten und verwendet folgende Rahmenbedingungen:

- ortlos, d.h. ohne konkreten Bauplatz in Österreich
- Planungsbasis der technische Planung ist die OIB-Richtlinie 2011

gemini+_ Wohnlandschaften im Wienerwald

im Auftrag von Tobias Baldauf und Marie Theres Okresek.

Planung:

grundstein im Planungsteam mit AL1 Architekten, bauchplan Landschaftsarchitektur und -urbanismus, Peter Kneidinger Planungsbeginn: 2009

Fertigstellung Bauteil 1: 2012

Bauteil 2 in Arbeit ausgezeichnet mit:

"Das beste Haus" Architekturpreis 2013 – Bundeslandsieger

Niederösterreich

Laut den Recherchen von grundstein das erste Holz-Beton-Verbund-Gebäude Österreichs, das im Selbstbau hergestellt wurde.

Planungsbasis der räumlichen Planung ist das durchschnittliche Raumprogramm von Wettbewerbsausschreibungen der letzten 10 Jahre bzw. der Versuch diesen Rahmen partiell zu durchbrechen.

Raumprogramm

"Idealtyp"

Schnittmenge der Raumprogramme von Wettbewerbsausschreibungen in Österreich der vergangenen 10 Jahre

Anzahl		m² je		Σ m²	Bezeichnung
	Varianz		Varianz		
					(Windfang)
					Eingangs- und Wartebereich für Eltern
1		15	(bis 20)	15	Leiterzimmer mit Waschbecken (inkl. Isolierbereich für kranke Kinder)
1		20		20	Personalzimmer mit Garderobe Ess- und Aufenthaltsraum für Personal (Spinde)
1		4		4	Personalwaschraum mit Dusche und WC direkter Zugang vom Personalzimmer aus
1		10		10	Putzraum
3	(2 bis 4)	60	(bis 65)	180	Gruppenräume mit multifunktionellem Bereich fließendes Wasser in der Wirtschaftsecke ideale Gruppengrösse: 15-20 (ganztags), 20-25 (halbtags) ideale Gruppengrösse < 3J: 6-8 Kinder
3	(2 bis 4)	5		15	Abstellräume, den Gruppenräumen direkt angeschlossen
3	(2 bis 4)	10		30	Garderoben nach Möglichkeit mit direktem Zugang ins Freie Banklänge pro Kind ca. 30 cm, Mindestraumbreite 2,5 m
3	(2 bis 4)	8		24	Waschräume mit Toiletten und Waschbecken in verschiedenen Höhen Zugang von Gruppenraum & Garderobe
1		80		80	Ruhe- und Bewegungsraum oder Markplatz
1		10		10	mit angeschlossenem Abstellraum
1		5		5	Behinderten WC mit Dusche (Doppelnutzung als Besucher- und Bediensteten WC)
1		20		20	Aufwärmküche mit Abstellfläche
1		30		30	Essbereich im direktem Anschluß an die Aufwärmküche
1		15		15	Abstellraum
1		n. Bedarf		n. Bedarf	Heiz- und Technikraum
		277		458	Nettonutzfläche gesamt zz. Verkehrsfläche

Typ 2

2 Gruppen

Anzahl	m² je	Σ m²	Bezeichnung
			(Windfang)
			Eingangs- und Wartebereich für Eltern
			Leiterzimmer mit Waschbecken (inkl. Isolierbereich für kranke Kinder)
1	14	14	Personalzimmer mit Garderobe Ess- und Aufenthaltsraum für Personal (Spinde)
			Personalwaschraum mit Dusche und WC direkter Zugang vom Personalzimmer aus
			Putzraum
2	64	128	Gruppenräume mit multifunktionellem Bereich
			fließendes Wasser in der Wirtschaftsecke ideale Gruppengrösse: 15-20 (ganztags), 20-25 (halbtags) ideale Gruppengrösse < 3J: 6-8 Kinder
2	4	8	Abstellräume, den Gruppenräumen direkt angeschlossen
2	15	29	Garderoben nach Möglichkeit mit direktem Zugang ins Freie Banklänge pro Kind ca. 30 cm, Mindestraumbreite 2,5 m
2	7	13	Waschräume mit Toiletten und Waschbecken in verschiedenen Höhen Zugang von Gruppenraum & Garderobe
1	64	64	Ruhe- und Bewegungsraum oder Markplatz
			mit angeschlossenem Abstellraum
1	5	5	Behinderten WC mit Dusche (Doppelnutzung als Besucher- und Bediensteten WC)
1	14	14	Aufwärmküche mit Abstellfläche
1			Essbereich im direktem Anschluß an die Aufwärmküche
1	2	2	Abstellraum
1	3	3	Heiz- und Technikraum
		281	Nettonutzfläche gesamt zz. Verkehrsfläche

3 Gruppen

Anzahl	m² je	Σ m²	Bezeichnung
			(Windfang)
1	41	41	Eingangs- und Wartebereich für Eltern
			Leiterzimmer mit Waschbecken (inkl. Isolierbereich für kranke Kinder)
1	48	48	Personalzimmer mit Garderobe Ess- und Aufenthaltsraum für Personal (Spinde)
1	6	6	Personalwaschraum mit Dusche und WC direkter Zugang vom Personalzimmer aus"
1	6	6	Putzraum
3	56	169	Gruppenräume mit multifunktionellem Bereich fließendes Wasser in der Wirtschaftsecke ideale Gruppengrösse: 15-20 (ganztags), 20-25 (halbtags) ideale Gruppengrösse < 3J: 6-8 Kinder
3	4	13	Abstellräume, den Gruppenräumen direkt angeschlossen
3	21	64	Garderoben nach Möglichkeit mit direktem Zugang ins Freie Banklänge pro Kind ca. 30 cm, Mindestraumbreite 2,5 m
3	7	21	Waschräume mit Toiletten und Waschbecken in verschiedenen Höhen Zugang von Gruppenraum & Garderobe
1	83	83	Ruhe- und Bewegungsraum oder Markplatz
	6	6	mit angeschlossenem Abstellraum
1	5	5	Behinderten WC mit Dusche (Doppelnutzung als Besucher- und Bediensteten WC)
1	10	10	Aufwärmküche mit Abstellfläche
1	45	45	Essbereich im direktem Anschluß an die Aufwärmküche
1	5	5	Abstellraum
1	7	7	Heiz- und Technikraum
		524	Nettonutzfläche gesamt zz. Verkehrsfläche

Typ 4

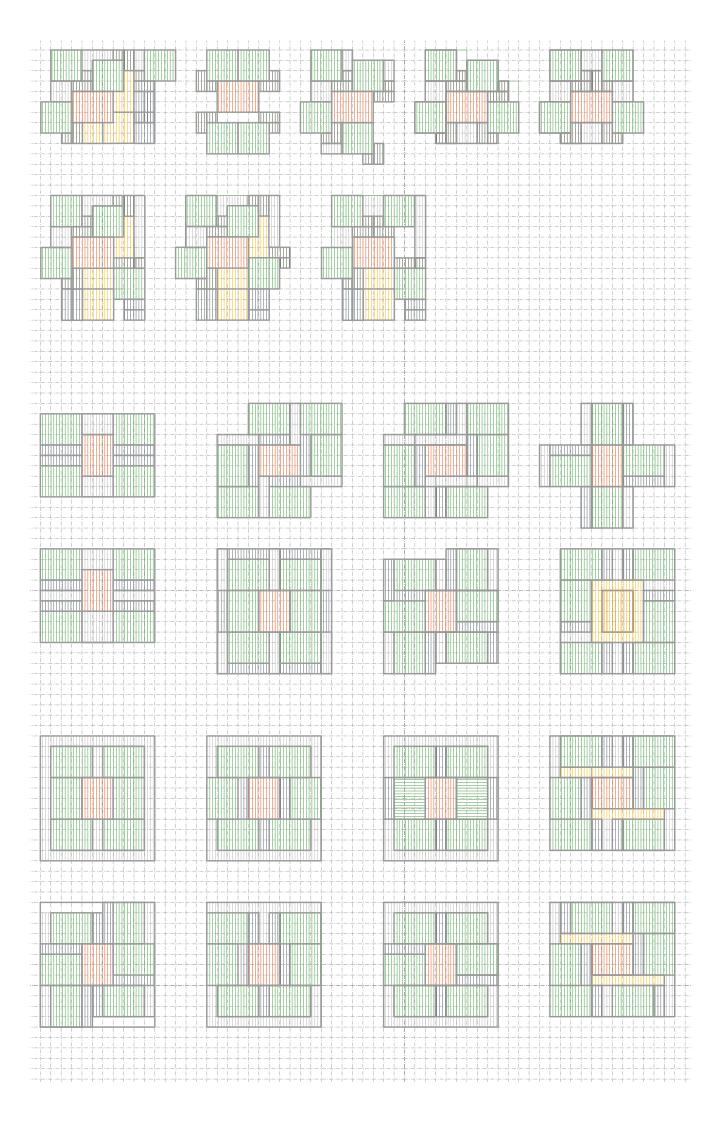
4 Gruppen

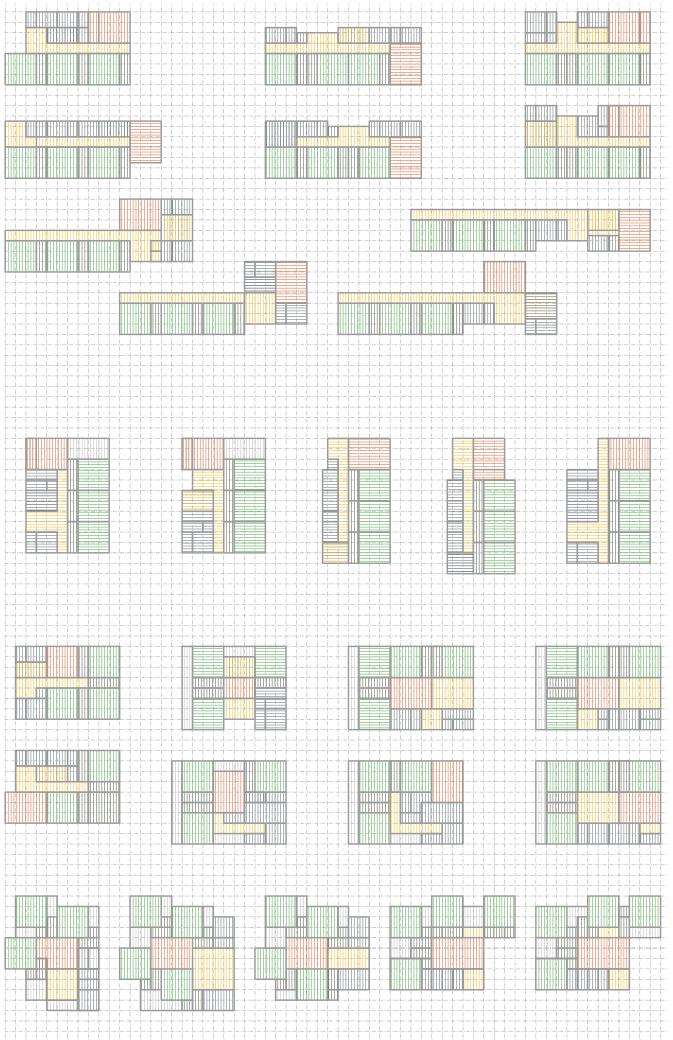
Anzahl	m² je	Σ m²	Bezeichnung
			(Windfang)
1	18	18	Eingangs- und Wartebereich für Eltern
1	14	14	Leiterzimmer mit Waschbecken (inkl. Isolierbereich für kranke Kinder)
1	30	30	Personalzimmer mit Garderobe Ess- und Aufenthaltsraum für Personal (Spinde)
			Personalwaschraum mit Dusche und WC direkter Zugang vom Personalzimmer aus
1	14	14	Putzraum
4	63	252	Gruppenräume mit multifunktionellem Bereich fließendes Wasser in der Wirtschaftsecke ideale Gruppengrösse: 15-20 (ganztags), 20-25 (halbtags) ideale Gruppengrösse < 3J: 6-8 Kinder
4	4	17	Abstellräume, den Gruppenräumen direkt angeschlossen
4	17	69	Garderoben nach Möglichkeit mit direktem Zugang ins Freie Banklänge pro Kind ca. 30 cm, Mindestraumbreite 2,5 m
4	7	28	Waschräume mit Toiletten und Waschbecken in verschiedenen Höhen Zugang von Gruppenraum & Garderobe
1	82	82	Ruhe- und Bewegungsraum oder Markplatz
			mit angeschlossenem Abstellraum
1	5	5	Behinderten WC mit Dusche (Doppelnutzung als Besucher- und Bediensteten WC)
1	29	29	Aufwärmküche mit Abstellfläche
1	20	20	Essbereich im direktem Anschluß an die Aufwärmküche
1			Abstellraum siehe Aufwärmküche
1	7	7	Heiz- und Technikraum
		582	Nettonutzfläche gesamt zz. Verkehrsfläche

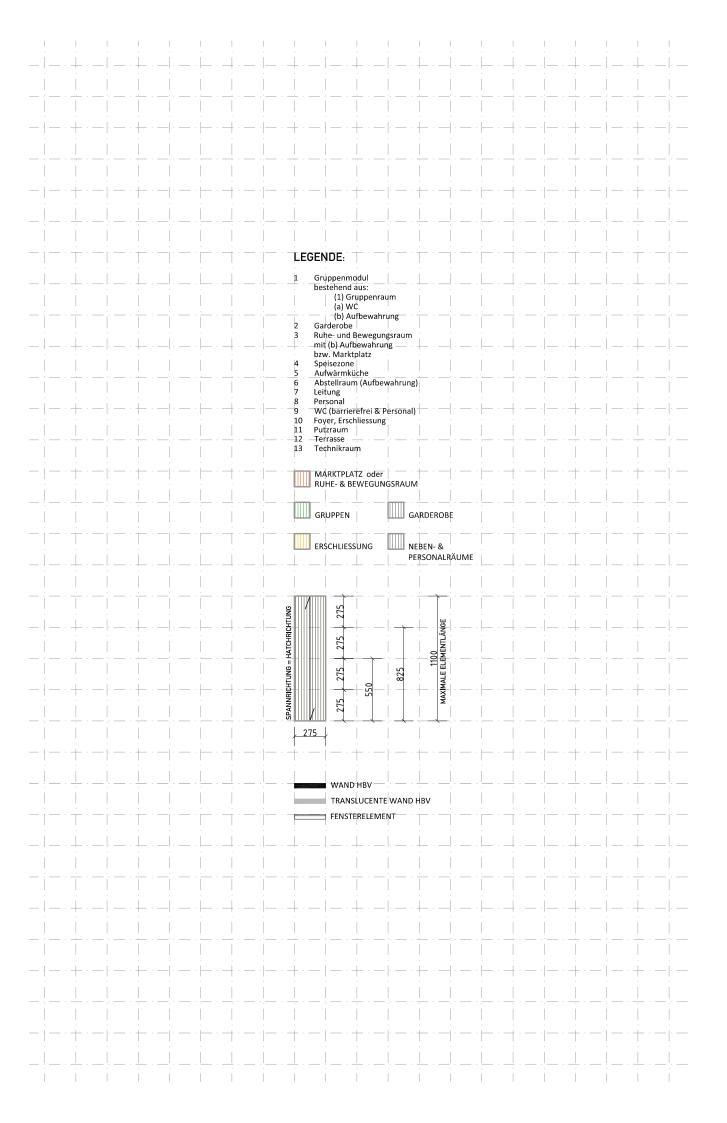
ENTWURF

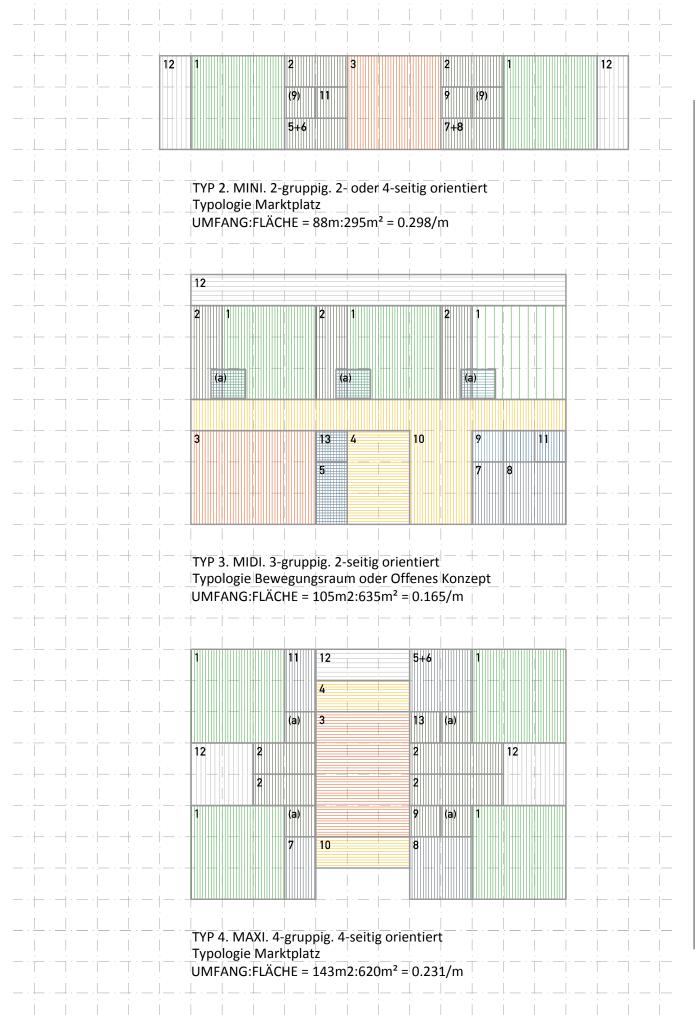
Typenentwicklung

Entwurf mit vorgefertigten Holz-Beton-Verbund-Elementen


Auf Basis folgender Rahmenbedingungen:


- Entwurfsvorgaben
- Raumprogramm
- Elementierung HBV
- Transport


wurde letztendlich ein Raster von 2.75 x 2.75 m ausgewählt, das als Grundlage für die Entwurfsstudien dient. Die Richtung der Schraffur zeigt dabei die Spannrichtung der HBV Elemente an.


Im folgenden sind einige Studien dargestellt, um die Arbeitssschritte zu verdeutlichen. Die Darstellung auf der linken Seite zeigt Studien eher zu Beginn des Prozesses, die auf der rechten Seiten jene gegen Ende des Prozesses.

Die darauffolgende Seite zeigt Legende und Auswahl jener Entwürfe, an denen weitergearbeitete wurde.

Elementierung

HBV System

Spannweiten der HBV-Balkendecke produktspezifisches Herstellerbeispiel von annährend repräsentativem Charakter

							Sp	annwe	ite der	HBV-Balk	endecke	!						
	Belastung		5,00 m				5,50 m			6,00 m				6,50 m				
g [kN/m²]	p [kN/m²]	q [kN/m²]	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	- Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß
1,00	1,50	2,50	10	8	16	90	10	8	16	90	8	12	16	80	8	12	16	70
1,50	1,50	3,00	10	8	16	70	8	8	16	60	8	12	16	70	8	12	20	90
1,50	2,25	3,75	10	8	16	75	8	8	20	75	10	12	20	90	12	16	20	95
1,75	2,25	4,00	10	8	16	70	8	8	20	70	10	12	20	90	10	16	20	90
1,75	2,75	4,50	10	8	16	65	10	12	20	90	10	12	20	85	8	16	20	80
1,75	3,50	5,25	10	8	20	75	8	12	20	80	10	12	20	70	8	16	24	85
1,75	5,00	6,75	10	8	20	60	8	16	20	80	10	16	20	70	8	16	24	75

				Spannweite der HBV-Balkendecke														
Belastung		7,00 m			7,50 m			8,00 m				8,50 m						
g [kN/m²]	p [kN/m²]	q [kN/m²]	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	- Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß
1,00	1,5	2,50	12	16	20	100	12	12	24	100	12	14	24	90	12	16	28	100
1,50	1,50	3,00	12	16	20	95	12	16	24	100	12	16	24	90	12	16	30	105
1,50	2,25	3,75	12	16	24	95	12	16	24	90	12	16	28	95	12	16	32	120
1,75	2,25	4,00	12	16	24	95	12	16	24	85	12	16	28	90	12	16	32	120
1,75	2,75	4,50	12	16	24	90	10	16	24	80	12	16	28	100	12	16	32	110
1,75	3,50	5,25	12	16	24	90	10	16	24	75	12	16	32	110	12	16	36	120
1,75	5,00	6,75	12	16	28	90	10	16	28	80	12	16	32	90	12	16	36	95

							Spa	annwe	ite der	HBV-Ball	cendecke							
	Belastung			9,00 m 9,50			0 m	0 m 10,00 m			10,50 m							
g [kN/m²]	p [kN/m²]	q [kN/m²]	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	- Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß	Beton [cm]	Holz b [cm]	Holz h [cm]	Achs- maß
1,00	1,50	2,50	12	16	30	95	12	16	36	100	12	20	36	100	12	24	36	100
1,50	1,50	3,00	12	16	32	100	12	16	36	100	12	20	38	100	12	24	38	95
1,50	2,25	3,75	12	16	32	100	12	16	36	115	12	20	38	110	12	24	38	100
1,75	2,25	4,00	12	16	34	105	12	20	36	115	12	20	40	120	12	24	40	110
1,75	2,75	4,50	12	16	36	115	12	20	36	115	12	20	40	120	12	24	40	110
1,75	3,50	5,25	12	18	36	115	12	20	36	115	12	20	40	120	12	24	40	110
1,75	5,00	6,75	12	20	36	105	12	24	36	110	12	24	40	115	12	24	42	115

ELT.derix

Transport

Wieshofer

"Normaltransportmasse $I \times b \times h = 10.0 \times 2.55 \times 3.0 \text{ m}$

Ständige Sondergenehmigung der Firma $1 \times b \times h = 12.0 \times 3.0 \times 3.9 \text{ m}$ sind mit Aufpreis von € 40/h netto möglich

Transporte bis h=4.10 m Ladehöhe sind möglich, allerdings ist hierfür eine sogenannte Routengenehmigung erforderlich."

Telefonnotiz Wieshofer Transporte Linzer Straße 43 4221 Steyregg

Felbermayr

"Folgende Transporte sind zu bevorzugen:

ohne Begleitung (ständige Sondergenehmigung Frächter):

 $1 \times b \times h = 14 \times 3 \times 4.2 \text{ m}$

mit Standardbegleitung: $1 \times b \times h = 16 \times 3.5 \times 4.5 \text{ m}$ (hier sind die Kosten noch einigermaßen vertretbar)"

"Noch größe Abmessungen sind natürlich möglich, der Aufwand muss aber den Produktionskosten (Vorteile in der Werkstatt, Vorfertigung) gegenüber gestellt werden.

Ein weiterer Faktor bei der größeren Breite ist natürlich die Länge der Elemente; tief gelegte Sattelzüge können ohne großen Aufwand Elemente bis

I x b x h = 9 x 1.7 x 4 m bwz $1 \times b \times h = 9 \times 2.9 \times 3.8 \text{ m}$ transportieren." H. Anreiter

Telefonnotiz & Emailkontakt Felbermayr Holding GmbH Machstraße 7 A-4600 Wels via Herbert Anreiter Ing. Georg Kumpfmüller Baugesellschaft mbH & Co KG Pfarrkirchen 34 4141 Pfarrkirchen

Eine Übersicht über die Transportbedingungen Österreich findet sich im Anhang unter dem Punkt

Transport.

Argument

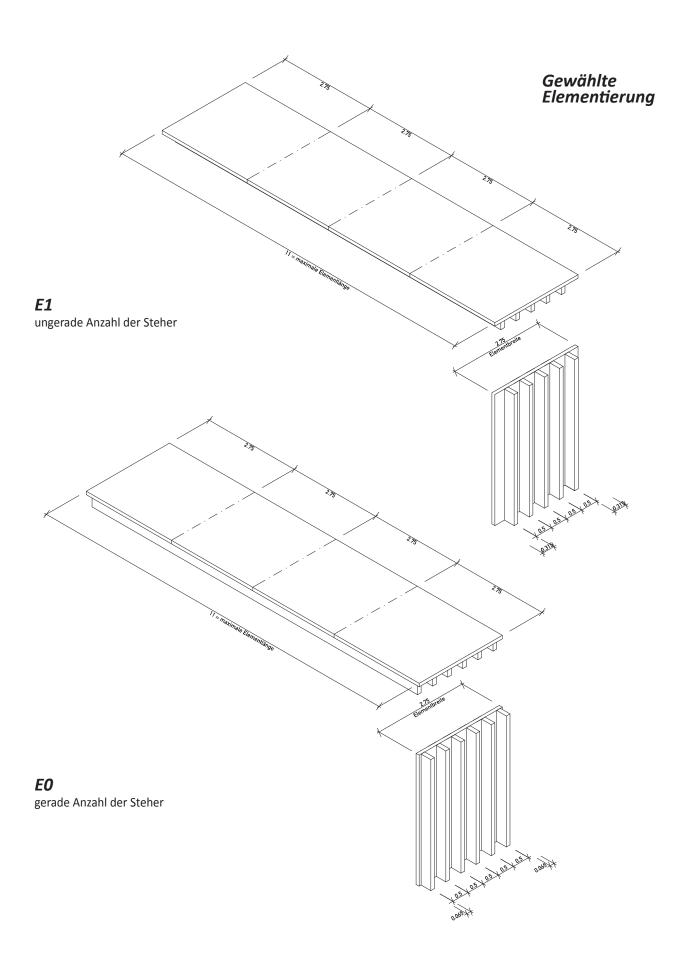
Die Wahl der Elementgrößen scheint auf den ersten Blick eine sehr einfache zu sein, da diesee sich aus folgenden Hauptparametern

- Entwurf
- Systemeigenschaften HBV
- **Transport**

ergeben sollten. Insbesondere Entwurf aber auch Transport sind allerdings sehr weiche Parameter: Die Wahl der perfekten Transportgrösse kann ohne Kenntnis des exakten Standortes nur annäherungsweise bestimmt werden, da z.B. Straßenbreiten oder Durchfahrtshöhen zu berücksichtigen sind. Darüberhinaus verfügt jedes Transportunternehmen über eigene dauerhafte Sondergenehmigungen. Die Wahl des Formates hängt also auch von den lokalen Bedingungen ab wie dem

- Produktionsort
- Standort
- Straßennetz
- Genehmigungen des Frächters.

Das gewählte Format baut auf auf einem Raster von 2.75 x 2.75 m.


maximal verwendetes Format: $b \times l = 2.75 \times max. 11 m$

meist verwendetes Format: $b \times l = 2.75 \times 8.25 m$

Kleinformate: b x I = 2.75 x 5.5 m $b \times l = 2.75 \times 2.75 m$

Das gewählte Format ist das Ergebnis eines Näherungsprozesses aus den angegebenen Hauptparametern.

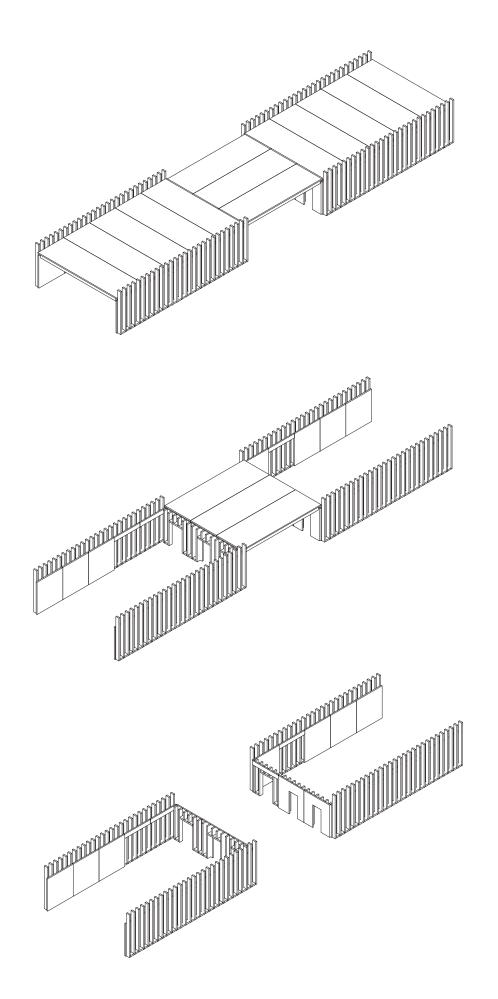
Der Abstand der Steher ergibt sich aus der Plattenbreite des Polycarbonatmaterials. Die derzeit marktüblichen Breiten für Architekturanwendungen mit geeignetem U-wert sind großteils 50cm.

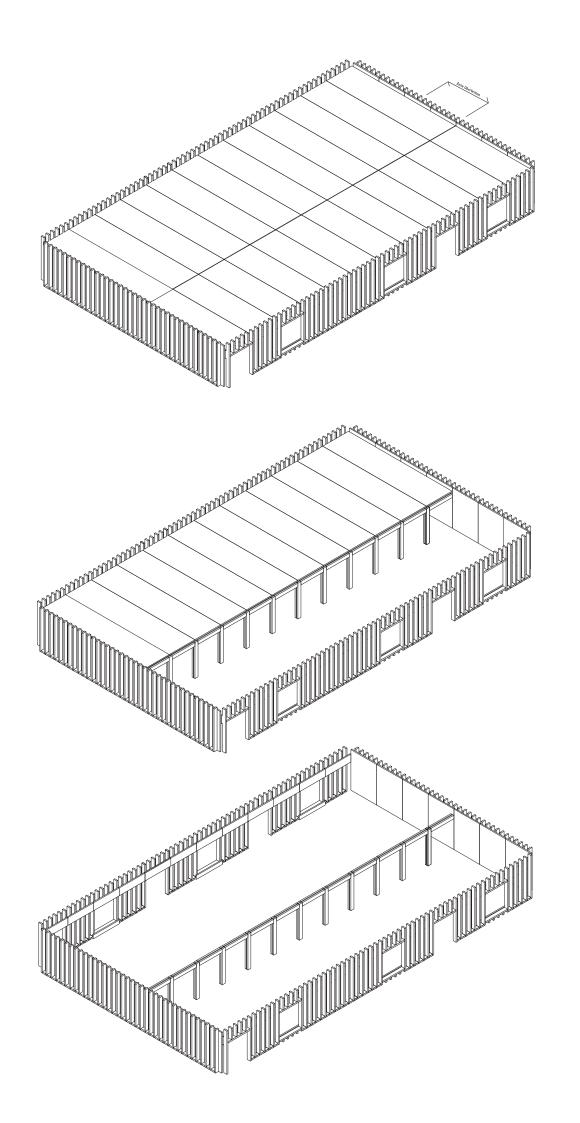
Entwurf

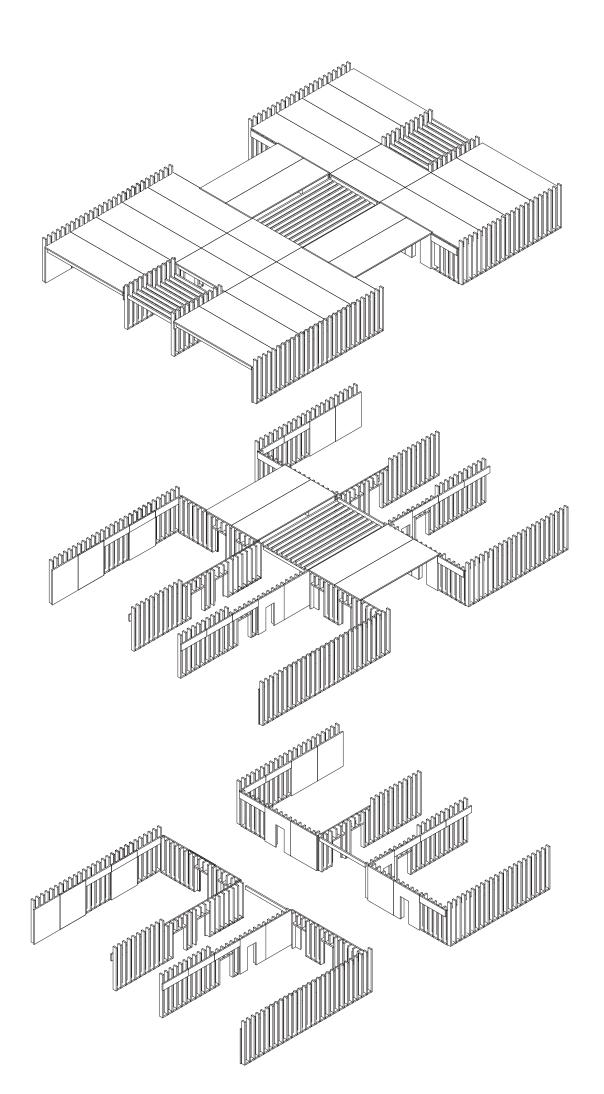
Maßstab 1:200

Schaubilder

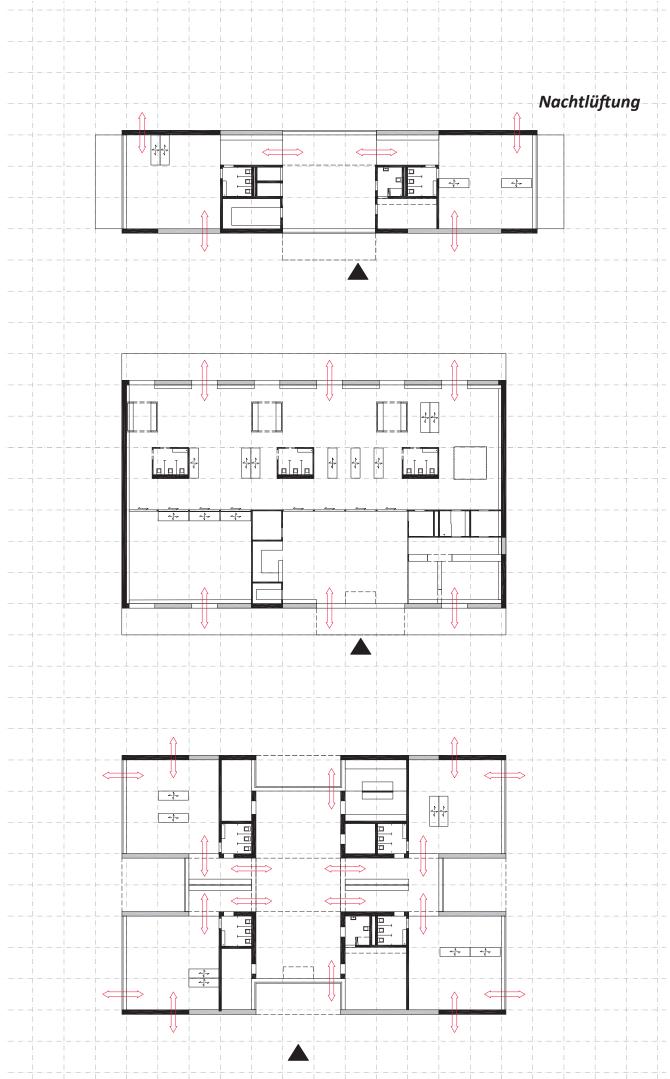
Typ 2



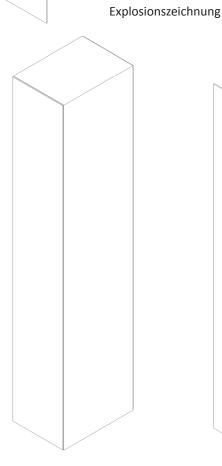


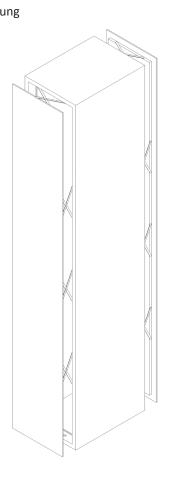


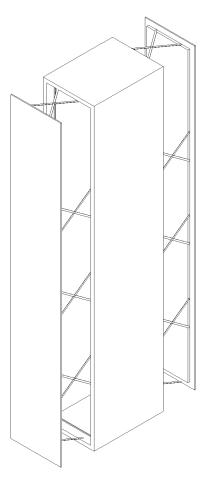
Elementierung


Entwurf

Gebäudekonzepte




Nachtlüftungselement


Es wurde das Grundprinzip eines Parallelausstell-System gewählt.

Durch das parallele Öffnen kann sich ein gleichmäßiger über alle Seiten verteilter Luftstrom bilden. Das Fassadenmaterial kann in einer Ebene weitergeführt werden - das Lüftungslement ist daher als Gliederungselement der Fassade redundant. Öffnungsflügel können z.B. mittels elektrischer Kettenantriebe aber auch manuell parallel verschoben/geöffnet werden. Es wird ein Tischlerelement konzipiert, welches innen

und außen über ein Schließelement verfügt - außen aus
dem Fassadenmaterial Polycarbonat, innen als gedämmtes Wandelement aus Holz.
Durch diese Konzeption als
Parallelausstellfenster (Öffnungsweite 0.1m) wird das
Element zur Nachtlüftung
eingesetzt. Es erfüllt gleichzeitig den Einbruchsschutz.
Genutzt in oberen Geschossen würde das Element
ebenso als Absturzsicherung
fungieren können.

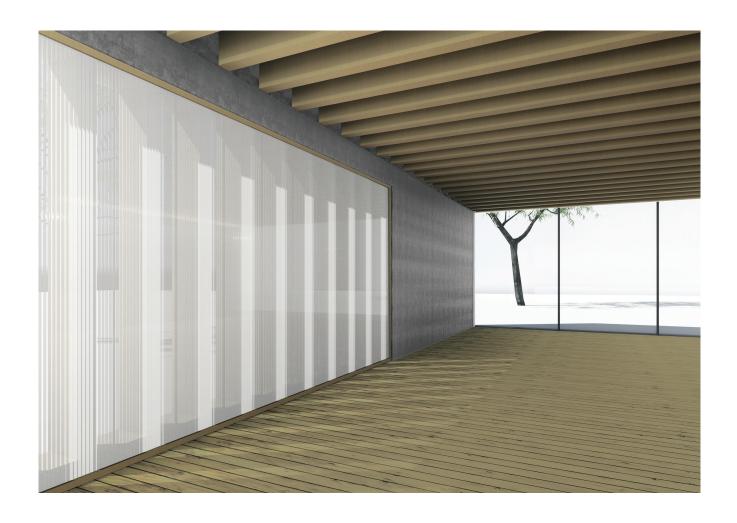
geschlossen

halb geöffnet

offen

Materialität

und Erscheinungsbild


Aussenraum **Materialkonzept**


Licht Holz Bepflanzung

Innenraum **Materialkonzept**

Holz Beton Licht

Beschreibung Materialkonzept

Holz-Beton-Verbund-Konstruktionen sind - wie der Name schon andeutet - eine Komposition aus Holzelementen, im konkreten Fall Stäben, und einer Betonplatte, welche schubfest mittels unterschiedlicher Systeme zu einem Verbund zusam-

mengefügt werden (siehe Kapitel Grundlagen). Unter dem Aspekt der Materialreduktion ist Konstruktion = fertige Oberfläche, d.h.

- Beton = Sichtbeton
- Holzstäbe = Sichtträger Nur dort, wo es nicht anders möglich, werden diese

Konstruktionen mit anderen Materialien ergänzt oder ersetzt.

Beschreibung **Material Holz**

Die Wahl der Holzarten • ergibt sich aus der Möglichkeit ein kohärentes Er- • scheinungsbild in allen Einsatzbereichen zu erhalten:

- HBV Träger
- Boden Innenräume
- Terrassenboden
- Innenwände (BSH)
- Tischlerkonstruktionen

Die Jahrringe der Tanne sind deutlich erkennbar, wobei der Übergang gleitend ist. Das weiß-gelbliche bis grauviolette Holz dunkel unter Lichteinwirkung deutlich

Sie besitzt gutes Stehvermögen und schwindet mäßig.

Die Lärche hat einen schma-

len, hellen Splint. Das Kernholz variiert von hellbraun

bis rotbraun und dunkelt

stark nach. Der Früh- und

Spätholzkontrast ist sehr ausgeprägt. Aufgrund unregelmäßigem Faserverlauf

besteht

Oberflächenbehand-Alle lungen sind gut anwendbar. Tannenholz hat eine bemerkenswerte Beständigkeit gegen Säuren und Alkalien. Sie kommt unbehandelt bzw. gesägt als Bodenbelag, als Träger oder BSH und Akustikelement zum Einsatz.

die Gefahr des Splitterns und Ausreißens. Bei Obermanchmal mit harzlösenden

HBVH.001

flächenbehandlungen Mitteln vorzubehandeln.

HBVH.002



Es werden gespundete, gehobelte Bretter verwendet. Die Schalhaut muss im Ersteinsatz mit Zementleim/ Beton vorgealtert werden, sonst entstehen durch den Holzzucker Fehlstellen. Nach jedem Einsatz verringert sich das Saugverhalten. Durch

die wechselnden Feuchtezustände verformt sich das Holz. Unbehandelte Brettschalungen ergeben erst beim zweiten oder dritten Einsatz ein konstantes Flächenbild, welches sich noch in der Helligkeit des Farbtons ändern kann.

Brettschalung

BBO.001

Die Oberflächen sind durch Schalhautfugen und Duchführungen der Schalungsanker geprägt. Die Fugenstruktur und die Farbe der Flächen sind gestaltbar. Makellose Sichtbetonflächen sind mit glatten, nicht

Schalhäuten

saugenden

schwer zu erreichen. Erst beim zweiten oder dritten Einsatz entsteht ein robustes Flächenergebnis. Mit den Schalhäuten können aber fünfzig und mehr konstante Ergebnisse erzeugt werden.

Glatte Schalung

BBO.002

Matrizen bestehen aus Kunststoff-Matten mit einer Rückendicke von etwa 8-10mm und müssen auf eine Trägerplatte aufgeklebt werden. Matrizenschalungen bestehen aus der texturgebenden Schicht und einem Rücken aus verstärktem Schaumstoff. Mit Matrizen können vorgegebene Standard-/Sondertexturen in die Betonflächen gebracht werden. Es können bei entsprechender Pflege weit über hunderte Einsätze mit gleichmäßigem Flächenbild gemacht werden.

Matrizenschalung

BBO.003

Die Vliese werden auf die Schalhaut aufgezogen und der Beton erhärtet unmittelbar am Vlies. Überschusswasser und oberflächennahe Luftporen können durch die Filterwirkung entweichen. Dadurch entsteht ein poren-, wolken- und flecken-

freies Farbbild. Jedoch lässt die Textur des Filtervlieses die Oberfläche dunkler erscheinen.

Filtervliese

BBO.004

OSB-Platten werden auf Schalungen aufgedoppelt. Sie ergeben eine stark saugende und quellende Schalhaut. Die Spanstruktur überzeichnet andere Flächeneffekte (Schuttlagen, wolkige Farbabweichungen). Helle Betone ergeben relativ

dunkle Flächen. Durch das erhärtungsstörende Holz ergeben sich raue und dunklere Flächen. Durch die Betonfeuchtigkeit quellen die Platten. Dadurch werden Auslaufen von Zementleim und farbliche Abweichungen verhindert.

OSB-Platten

BBO.005

Beschreibung Material Sichtbeton

Der Beton der HBV-Elemente kommt sichtbar zum Einsatz - je Verwendung (Decke, Wand) muß unterschiedlich geschalt werden um die entsprechende Sichtqualität zu erhalten. Im Folgenden sind Oberflächen erfasst,welche direkt im Zuge des Schalen-

vorganges erhalten werden können, um die Betonoberfläche zu gestalten. Auf die Gestaltung der Betonoberfläche durch einen weiteren Arbeitsschritt wurde verzichtet.

Durch die digitale Formung von Schalungen (aus Holz, Wachs, Sand, etc.) können jegliche Betonformen und -oberflächen (wellig, perforiert, etc.) erzielt werden. So kann z.b. die Oberfläche des Betons erhöht werden und damit zu einer Verbesserung

der Wirkung der speicherwirksamen Masse beitragen.

digital hergestellte Schalungen

BBO.006

Variierende Effekte können duch unterschiedliche Aggregate im Mix erzeugt werden. Die ganze Betonfläche wird mit einem Abbindeverzögerer behandelt. Das veranlasst die Zementmischung an der Oberfäche weniger hart zu sein als die gehärtete

Zementmischung darunter. Die obere Schicht kann dann ausgewaschen werden. Im Fertigteilbau wird meist zweilagig gearbeitet, mit einem Waschbetonvorsatz und einer Kernlage aus konstruktiv bemessenem Beton.

Waschbetonflächen

BBO.007

Der Fotobeton ist eine Sonderform des Waschbetons. Ein Foto wird in Rauigkeiten (Auswaschtiefen) umgesetzt, welche Grautonabstufungen erzeugen. Dies erfordert eine exakte, mechanische Dosierung des Oberflächenverzögerers auf

eine Trägerfolie. Die präparierte Trägerfolie wird überbetoniert und die verzögerte Fläche nach dem Erhärten ausgewaschen. Die Auswaschtiefen variieren nur geringfügig.

Fotobeton

BBO.008

Zur farblichen Gestaltung von Beton können aufhellende oder abdunkelnde Pigmente eingesetzt werden. Zur Herstellung sehr heller bzw. weißer Flächen muss Weißzement verwendet werden. Weißzement ist ein eisenoxidarmer Port-

landzement, der aus speziellen rohen Materialien durch spezielle Prozesse erzeugt wird. Durch Weißzement entsteht hellfärbiger Beton. Ist weißer Beton gewünscht müssen zusätzlich weiße Pigmente eingesetzt werden.

Durchfärbung

BBO.010

Sind bunte Farbtönungen erwünscht, können entsprechende Farbpigmente zugemischt werden. Diese müssen licht- und alkaliresistent sein. Sollen helle Farbtöne erreicht werden, wird Weißzement eingesetzt. Für dunklere Farben können

helle Grauzemente verwendet werden. Üblicherweise werden 3-6% des Zementgehalts an Farbpigmenten zugegeben. Bunte Farbtöne erfordern hohe Sorgfalt beim Verwiegen, verlängerte Mischdauer und Vorreinigung von Mischwerkzeugen.

Durchfärbung

BBO.011

Durch den mit Stahlfasern versehenen Beton sollen magnethaftende Fertigbauteile entstehen.

Fasergehalt, Zugfestigkeit und Verankerung bestimmen die Leistungsfähigkeit. Schlagfestigkeit, Biege-, Spalt-, zentrische Zugfestigkeit und Verschleißwiderstand werden erhöht. Wärme kann gleichmäßiger und schneller verteilt werden. Bei Fertigteilen werden die Materialeigenschaften besser ausgenutzt, da die Fasern homogener verteilt werden können.

Stahlfaserbeton

BBO.013

Beschreibung Material Licht

Holz, Beton und Licht sind die Materialien, die diesen Entwurf bestimmen. Licht dringt einerseits durch Fenster in den Innenraum, andererseits bieten die Stegplatten die Möglichkeit, Lichtwände (technisch: Fenster) zu gestalten. Spie-

len mit den Tages- bzw. Jahreszeiten gewinnt so eine völlig andere Bedeutung. Durch großflächigere Belichtungsflächen herrschen im Innen wie im Außenraum ähnliche Stimmungen, ein Regen- oder Sonnentag kann durch dieses Gestaltungsele-

ment erlebbarer gemacht werden.

"Nur moderne Architekten glauben, Glas sei transparent" Hermann Czech (Gedächtnis der Autorin)

Glas, ein aus anorganischen Elementen bestehender amorpher Feststoff. Da Glas nur Strahlung in einem für den Menschen nicht sichtbaren Bereich absorbiert, erscheint es transparent. Im konkreten kommt Sicherheits-Sonnenschutz-Glas zum Einsatz und bildet eines der beiden Lichtelemente des Projektes.

Glas

LIG.001.1 LIG .001.2

Als Rohstoff werden Polycarbonate und andere polymere verwendet. Polycarbonat ist ein thermoplastischer Kunststoff, dessen Eigenschaften glasklar, elektrisch isolierend, hart, schlagfest, steif und spröde sind. Stegplatten haben ein niedriges

spezifisches Gewicht. Durch unterschiedliche Zusätze können Lichttransmissionsgrad und Gesamtenergiedurchlassgrad stark variieren. Seine Brandschutzklasse ist B1. Reines Polycarbonat vergilbt bei Sonneneinstrahlung.

Stegplatten

LIG.002.1 LIG.002.2

konkrete Wandauf-Der bau (siehe Kapitel Aufbauten) versucht mit wenigen Schichten auszukommen. Durch die Verwendung eines translucenten Fassadenmaterials - einer mehrschaligen Paneel aus Polycarbonat, einem glasklarem, hochschlagzähem Thermoplast - unter der Annahme daß kein Windpapier verwendet werden braucht zeigt diese Studie, wie mit dem Dämmmaterial das Erscheinungsbild der Fassade gestaltet werden kann.

AW01	Wand gegen Außenluft - H	IBV Holzfaser				
			von Innen nach Auße	n Dichte Dick	ke λ	d/λ
Normalbe	ton			0,10	00 1,710	0,058
Riegel dazw.			24,0 %	6	0,120	0,640
Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)			76,0 %	6 0,32	0,048	5,067
Luft steh.,	W-Fluss n. oben 36 < d < = 40) mm	*	0,04	00 0,250	0,160
Polycarbo	natstegplatte 30 mm		# *	0,03	0,030	0,990
				Dicke 0,42	00	
	RTo 5,2854	RTu 5,2204	RT 5,2529	Dicke gesamt 0,49	00 U-Wert	0,19
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi	0,26	

AW07 Wand ge	gen Außenluft -	HBV Stroh				
_			von Innen nach Auße	n Dichte Dicke	λ	d/λ
Normalbeton				0,1000	1,710	0,058
Riegel dazw.			24,0 %	6	0,120	0,640
Baustrohballen			76,0 %	6 0,3200	0,050	4,864
Luft steh., W-Fluss n.	oben 36 < d < = 4	10 mm	*	0,0400	0,250	0,160
Polycarbonatstegplatt	e 30 mm		# *	0,0600	0,030	1,980
				Dicke 0,4200		
	RTo 5,1675	RTu 5,1089	RT 5,1382	Dicke gesamt 0,5200	U-Wert	0,19
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

AW09	Wand gegen Außenluft -	HBV Hanf	von Innen nach Auße	en Dichte Dicke	λ	d/λ
Normalbe	eton			0.1000	1.710	0.058
Riegel da	ZW.		24,0	-,	0,120	0,640
Therm	ohanfplatte		76,0	% 0,3200	0,041	5,932
Luft steh.	, W-Fluss n. oben 36 < d < = 4	10 mm	*	0,0400	0,250	0,160
Polycarbo	onatstegplatte 30 mm		# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 5,7486	RTu 5,6554	RT 5,7020	Dicke gesamt 0,4900	U-Wert	0,18
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

AW09	Wand gegen Außenluft -	HBV Hanf	F						
				von Innen nach	h Außen	Dichte [Dicke	λ	d/λ
Normalbet	on					0	,1000	1,710	0,058
Riegel daz	W.				24,0 %			0,120	0,640
Thermo	hanfplatte				76,0 %	0	,3200	0,041	5,932
Luft steh.,	W-Fluss n. oben 36 < d < = 4	I0 mm		*		0	,0400	0,250	0,160
Polycarbor	natstegplatte 30 mm			# *		0	,0300	0,030	0,990
						Dicke 0	,4200		
	RTo 5,7486	RTu 5,6	6554	RT 5,7020	Di	cke gesamt 0	,4900	U-Wert	0,18
Riegel:	Achsabstand	0,500 Br	reite C),120		Rse+F	Rsi 0,	26	

AW05	Wand gegen Außenluft -	HBV Kork				
			von Innen nach Auf	3en Dichte Dick	e λ	d/λ
Normalbet	on			0,10	00 1,710	0,058
Riegel daz	w.		24,0) %	0,120	0,640
Dämml	kork		76,0	0,320	0,040	6,080
Luft steh.,	W-Fluss n. oben 36 < d < = 4	0 mm	*	0,040	00 0,250	0,160
Polycarbo	natstegplatte 30 mm		# *	0,060	0,030	1,980
				Dicke 0,42	00	
	RTo 5,8220	RTu 5,7239	RT 5,7730	Dicke gesamt 0,520	00 U-Wert	0,17
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi	0,26	

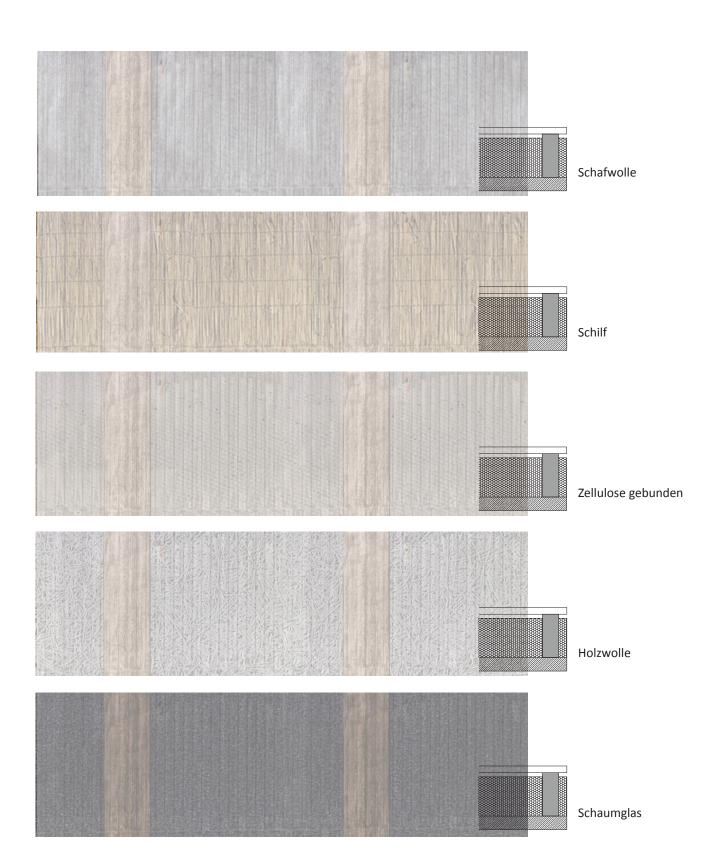
Bei allen untersuchten Dämmmaterialien handelt es sich um Plattenwerkstoffe

An dieser Stelle sei darauf hingewiesen, daß der Einsatz eines Windpapiers aus bautechnischer Sicht sinnvoll, wenn nicht sogar notwendig (abhängig vom verwendeten Material) ist - es handelt sich hiebei also um eine theoretisches Experiment.

Der Wandaufbau wie angeführt ist von mehreren Fachleuten (Bauphysik, Holzforschung - u.a. siehe Danksagung) durchgesehen und freigegeben.

Erscheinungsbild **Fassade**

AW04	Wand gegen Außenluft -	HBV Schafwoll	e von Innen nach Au	ßen Dichte	Dicke	λ	d/λ
Normalbe Riegel da			24	0 %	0,1000	1,710 0.120	0,058 0.640
Schaf	wolle, Klemmfilz, 30 kg/m³		,	0 %	0,3200	0,036	6,756
	, W-Fluss n. oben 36 < d < = 4 onatstegplatte 30 mm	10 mm	# *		0,0400 0,0600	0,250 0,030	0,160 1,980
	RTo 6.1372	RTu 6.0165	RT 6.0768	Dick Dicke gesar	e 0,4200 nt 0.5200	U-Wert	0.16
Riegel:	Achsabstand	0,500 Breite	0,120	•	,	26	0,10

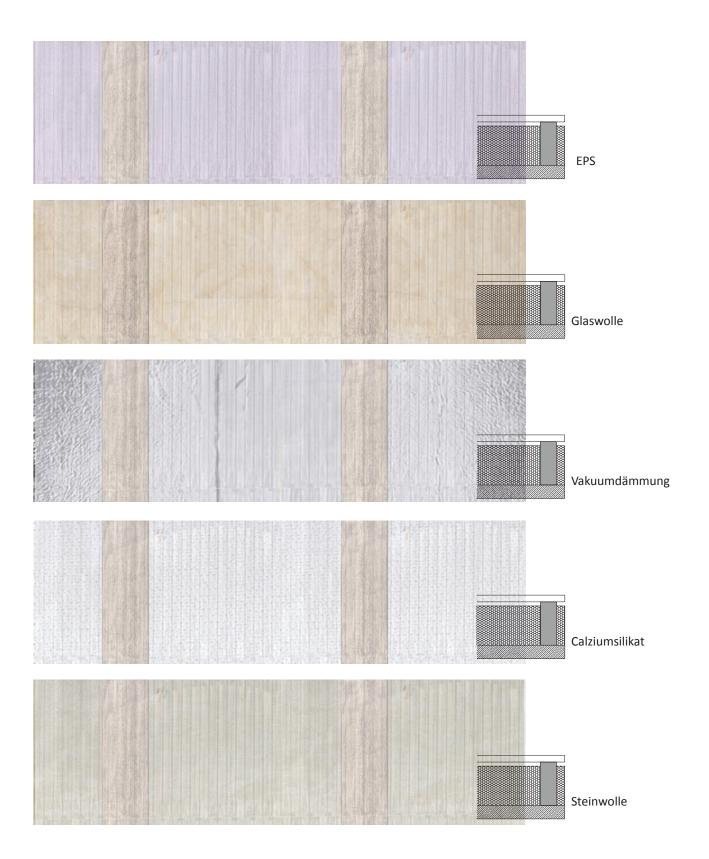

AW06	Wand gegen Außenluft -	HBV Schilf				
			von Innen nach Au	ßen Dichte Dicke	λ	d/λ
Normalbe	eton			0,100	1,710	0,058
Riegel dazw.			24,0	0 %	0,120	0,640
Schilfp	olatte, Wärmefluss quer zur Halr	nrichtung	76,0	0,320	0,060	4,053
Luft steh.	, W-Fluss n. oben 36 < d < = 4	10 mm	*	0,040	0,250	0,160
Polycarbo	onatstegplatte 30 mm		# *	0,060	0,030	1,980
				Dicke 0,420)	
	RTo 4,6540	RTu 4,6196	RT 4,6368	Dicke gesamt 0,520	U-Wert	0,22
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi	0,26	

AW02	Wand gegen Außenluft -	HBV Zellulose	gebunden			
	3 3		von Innen nach Außer	n Dichte Dicke	λ	d/λ
Normalbe	ton			0,1000	1,710	0,058
Riegel da	ZW.		24,0 %	0	0,120	0,640
flexCL			76,0 %	0,3200	0,041	5,932
Luft steh.	W-Fluss n. oben 36 < d < =	40 mm	*	0,0400	0,250	0,160
Polycarbo	natstegplatte 30 mm		# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 5,7486	RTu 5,6554	RT 5,7020	Dicke gesamt 0,4900	U-Wert	0,18
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

AW08 Wand	gegen Außenluft -	HBV Holzwolle	von Innen nach Au	ßen Dichte	Dicke	λ	d/λ
Normalbeton Riegel dazw.			24,0	0 %	0,1000	1,710 0,120	0,058 0,640
Holzwolleleichtb	auplatte zementgebui	nden	76,0	0 %	0,3200	0,090	2,702
Luft steh., W-Fluss	n. oben 36 < d < = 4	10 mm	*		0,0400	0,250	0,160
Polycarbonatstegpl	atte 30 mm		# *		0,0300	0,030	0,990
				Dick	e 0,4200		
	RTo 3,6156	RTu 3,6107	RT 3,6132	Dicke gesar	nt 0,4900	U-Wert	0,28
Riegel:	Achsabstand	0,500 Breite	0,120	R	se+Rsi 0,	26	

AW14	Wand gegen Außenluft -	HBV Schaumg	as			
	3-3		von Innen nach A	ußen Dichte Dicke	λ	d/λ
Normalbe	eton			0,1000	1,710	0,058
Riegel dazw.			24	,0 %	0,120	0,640
Schau	Schaumglasplatte (105 < roh < = 120 kg/m³)			0,3200	0,045	5,404
Luft steh.	, W-Fluss n. oben 36 < d < = 4	40 mm	*	0,0400	0,250	0,160
Polycarbo	onatstegplatte 30 mm		# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 5,4737	RTu 5,3978	RT 5,4358	Dicke gesamt 0,4900	U-Wert	0,18
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

Bei allen untersuchten Dämmmaterialien handelt es sich um Plattenwerkstoffe


AW15	Wand gegen Außenluft - HB	V EPS				
			von Innen nach Auße	n Dichte Dicke	λ	d/λ
Normalbe	ton			0,1000	1,710	0,058
Riegel da	ZW.		24,0 %	%	0,120	0,640
EPS			76,0 %	% 0,3200	0,035	6,949
Luft steh.,	, W-Fluss n. oben 36 < d < = 40 m	nm	*	0,0400	0,250	0,160
Polycarbo	natstegplatte 30 mm		# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 6,2218 F	RTu 6,0947	RT 6,1582	Dicke gesamt 0,4900	U-Wert	0,16
Riegel:	Achsabstand 0,	,500 Breite	0,120	Rse+Rsi 0	,26	

AW16	Wand gegen Außenluft -	HRV Glaswolle				
7	Trana gogon / tabonian	TIET GIGOTOTIC	von Innen nach Außer	Dichte Dicke	λ	d/λ
Normalbe	eton			0,1000	1,710	0,058
Riegel dazw.			24,0 %)	0,120	0,640
Glaswolleplatte			76,0 %	0,3200	0,034	7,153
Luft steh., W-Fluss n. oben 36 < d < = 40 mm			*	0,0400	0,250	0,160
Polycarbonatstegplatte 30 mm			# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 6,3089	RTu 6,1750	RT 6,2420 I	Dicke gesamt 0,4900	U-Wert	0,16
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

AW17 Wand gegen Außenluft - HBV Vakuumdämmung									
				von Innen na	ch Außen	Dichte	Dicke	λ	d/λ
Normalbeton							0,1000	1,710	0,058
Riegel dazw.				24,0 %			0,120	0,640	
Vakuum-Dämmplatte				76,0 %		0,3200	0,020	12,160	
Luft steh., W-Fluss n. oben 36 < d < = 40 mm			*			0,0400	0,250	0,160	
Polycarbonatstegplatte 30 mm			# *			0,0300	0,030	0,990	
						Dicke	e 0,4200		
	RTo 7,8758		7,5912	RT 7,7335	Di	icke gesam	nt 0,4900	U-Wert	0,13
Riegel: Achsabstand 0,500 Breite 0,120			Rs	e+Rsi 0,	26				

AW18 Wand geg	en Außenluft -	HBV Calciums i	ilikat				
			von Innen nach	Außen Dichte	Dicke	λ	d/λ
Normalbeton					0,1000	1,710	0,058
Riegel dazw.			2	24,0 %		0,120	0,640
Calziumsilikat Klimaplatte			7	76,0 %	0,3200	0,068	3,576
Luft steh., W-Fluss n. o	ben 36 < d < = 4	IO mm	*		0,0400	0,250	0,160
Polycarbonatstegplatte	30 mm		# *		0,0300	0,030	0,990
				Dic	ke 0,4200		
	RTo 4,3167	RTu 4,2946	RT 4,3056	Dicke gesa	mt 0,4900	U-Wert	0,23
Riegel:	Achsabstand	0,500 Breite	ite 0,120 Rse+Rsi 0,26				

AW19	Wand gegen Außenluft -	HBV Steinwolle	von Innen nach Auß	en Dichte Dicke	λ	d/λ
Normalbeton				0,1000	1,710	0,058
Riegel dazw.			24,0	%	0,120	0,640
Steinwolleplatte			76,0	% 0,3200	0,034	7,153
Luft steh., W-Fluss n. oben 36 < d < = 40 mm			*	0,0400	0,250	0,160
Polycarbonatstegplatte 30 mm			# *	0,0300	0,030	0,990
				Dicke 0,4200		
	RTo 6,3089	RTu 6,1750	RT 6,2420	Dicke gesamt 0,4900	U-Wert	0,16
Riegel:	Achsabstand	0,500 Breite	0,120	Rse+Rsi 0	,26	

DETAIL

Liste der Aufbauten: Vertikale Elemente von oben nach unten

Horizontale Elemente von innen nach aussen

Anforderungen an die Bauteile laut OIB-Richtlinie 6 (gg. Außenluft), minimal:

	U-Wert [W/m²K]
Wände gg. Außenluft	0,35
Transparente Bauteile vertikal	1,70
Transparente Bauteile horizontal (auch: Schrägen)	2,00
Dachflächenfenster	1,70
Fenster, Fenstertüren, verglaste Türen in Nicht-Wohngebäuden	1,40
Türen unverglast	1,70
Tore (Rolltore, Sektionaltore u.dgl)	2,50
Decken	0,20
Decken über Aussenluft	0,20
Böden (erdberührt)	0,40

(F) FENSTER / FENSTERTÜREN

Schiebeelemente:

Festelemente des Schiebelementes

(produktspezifisch)

(AW01) WAND HBV

(1)

[cm]

10.0 BETON (aktiviert)

14/32 HOLZSTEHER

dazw. WÄRMEDÄMMUNG (unterschiedliche Dämmvarianten)

(WINDPAPIER)

04.0 HINTERLÜFTUNG

03.0 POLYCARBONATPLATTE WITTERUNGSSCHUTZ

(A)

49.0

(AW02) WAND HBV TRANSLUCENT

(gilt hinsichtlich der Bauordnung sowie der energetischen Berechnung als Fenster)

(1)

[cm]

05.0 POLYCARBONATPLATTE

Luftzwischenraum lt. Schallschutzprüfung

05.0 POLYCARBONATPLATTE

14/32 HOLZSTEHER

04.0 HINTERLÜFTUNG

03.0 POLYCARBONATPLATTE WITTERUNGSSCHUTZ

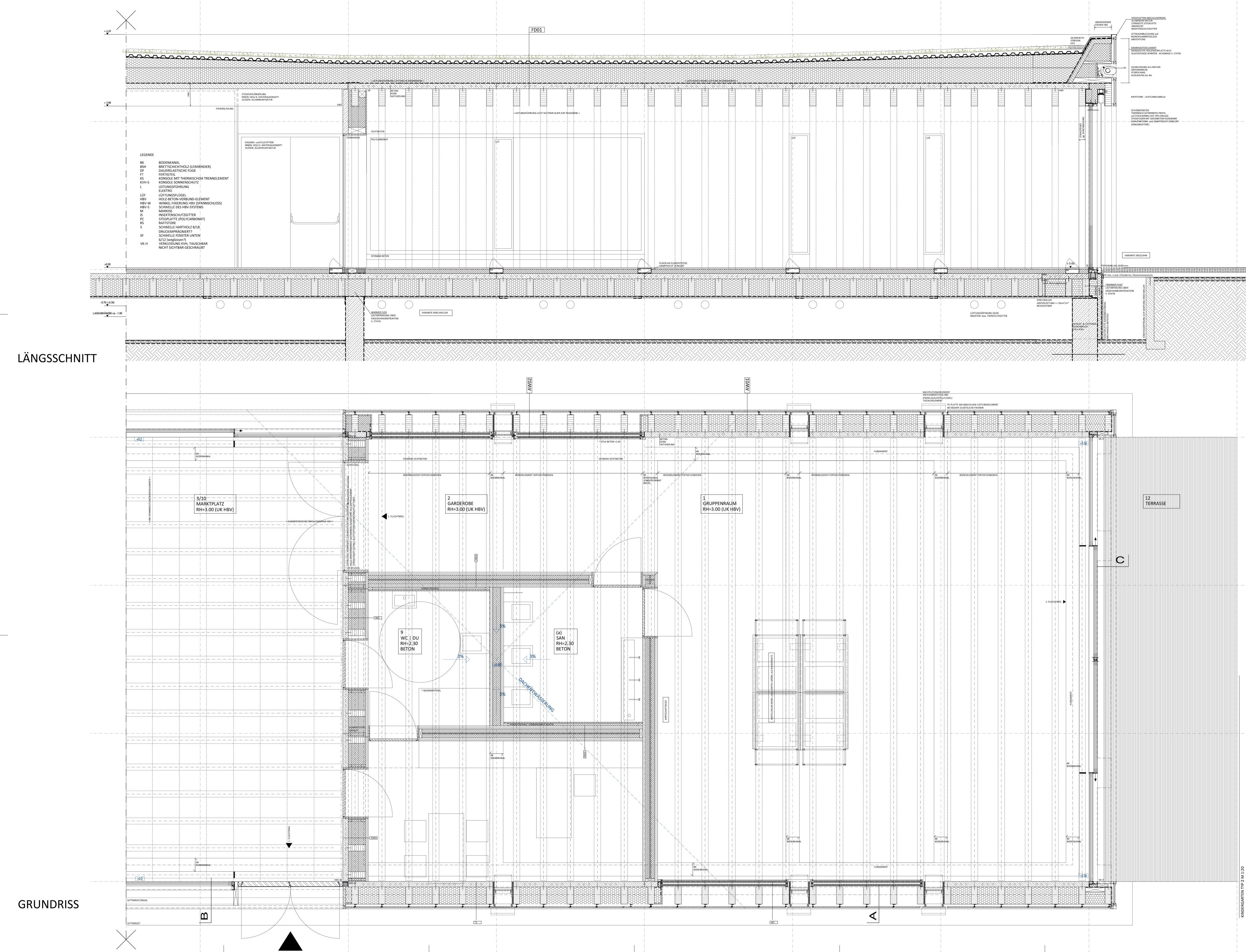
(A)

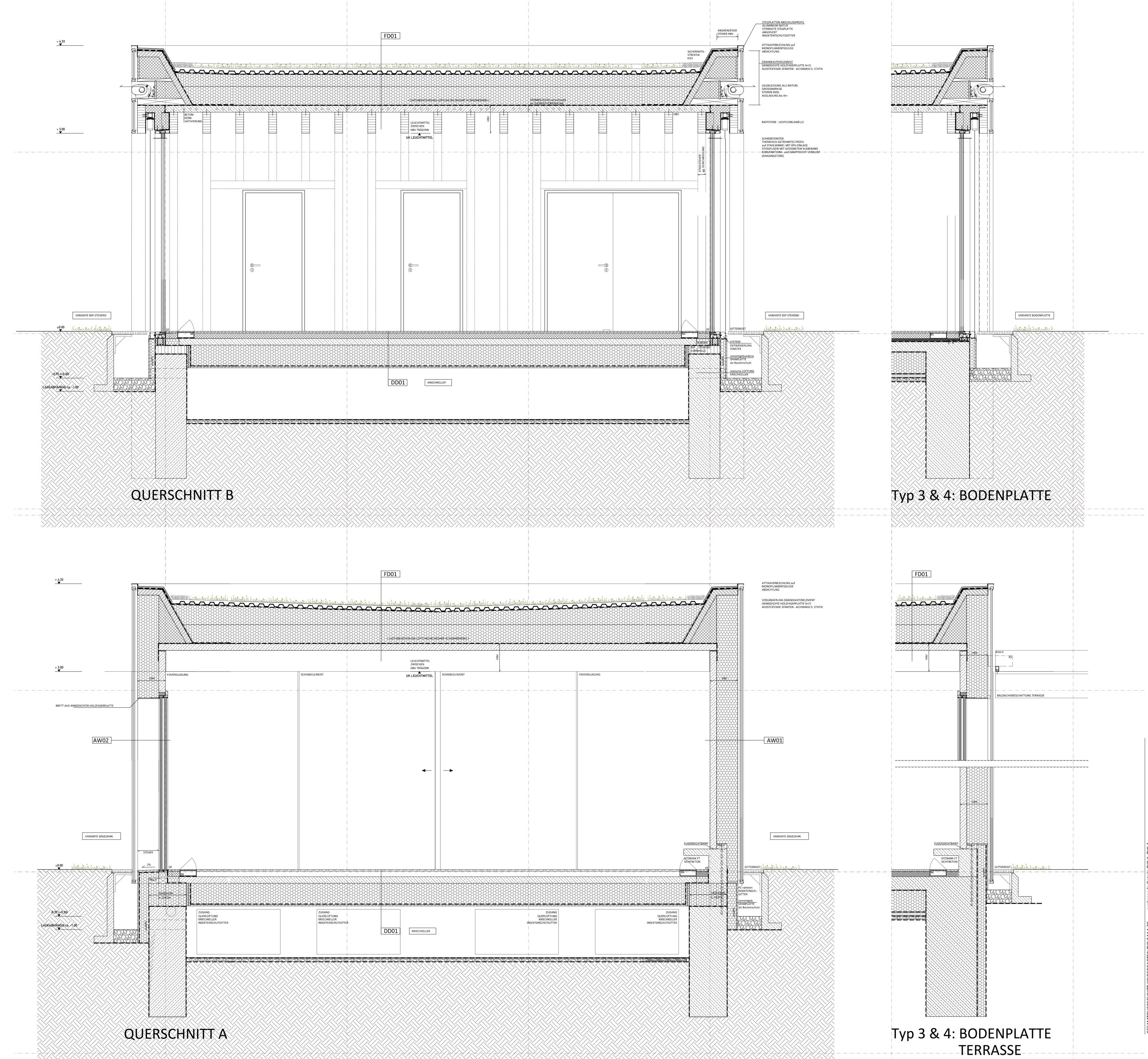
49.0

Aufbauten

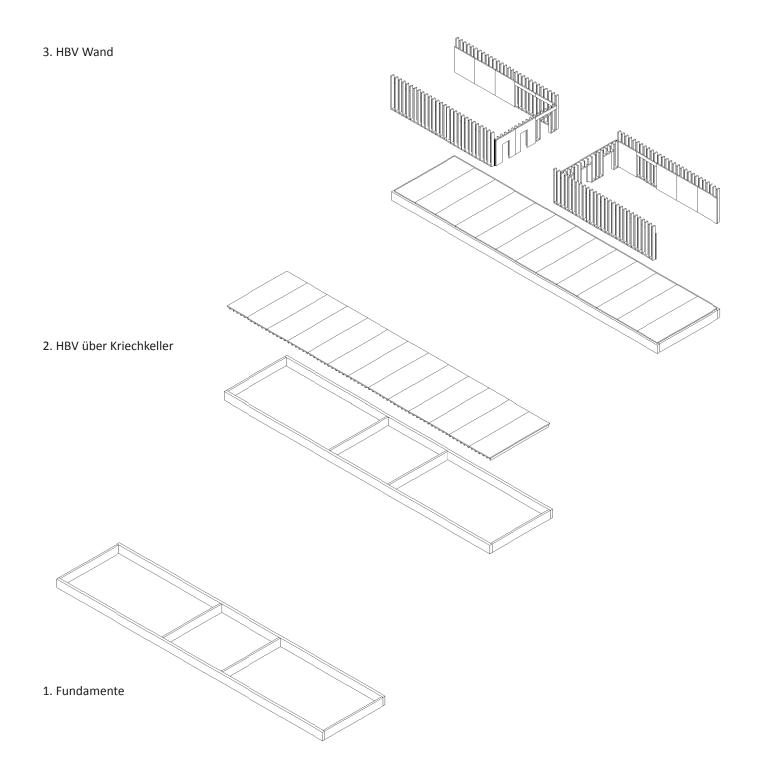
```
(ZW03) WAND INNEN (55dB)
(1)
[cm]
05.7 (DQ) bzw. 06.0 (DL) KREUZLAGENHOLZ, WOHNSICHTQUALITÄT
        (HOLZART = HOLZART HOLZ-BETON-VERBUNDELEMENTES)
        3 Schichten (DQ) 19/19/19 mm bzw. (DL) 19/22/19 mm
07.5
       FASERDÄMMSTOFF (z.B. Schafwolle)
01.5
       GKP bzw. GKF je Erfordernis
07.5
       FASERDÄMMSTOFF (z.B. Schafwolle)
08.8 (DQ) bzw. 09.0 (DL) KREUZLAGENHOLZ, WOHNSICHTQUALITÄT
       (HOLZART = HOLZART HOLZ-BETON-VERBUNDELEMENTES)
       3 Schichten (DQ) 27/34/27 mm bzw. (DL) 34/22/34
(1)
31.0 bzw. (31.3)
DL = Decklage in Richtung der Plattenlängsrichtung
DQ = Decklage in Richtung der Plattenquerrichtung
Plattenbreiten Standard (KLH) 2.40/2.50/2.73/2.95
(ZW02) WAND INNEN (38dB)
(1)
[cm]
                       KREUZLAGENHOLZ, WOHNSICHTQUALITÄT
05.7 (DQ) bzw. 6.0 (DL)
       (HOLZART = HOLZART HOLZ-BETON-VERBUNDELEMENT)
       3 Schichten (DQ) 19/19/19 mm bzw. (DL) 19/22/19 mm
05.0
       FASERDÄMMSTOFF (z.B. Schafwolle) zwischen Stehern
01.9
       STABVERLEIMTE PLATTE – OBERFLÄCHE WIE KREUZLAGENHOLZ
        (Erhältlichkeit geklärt),
                               WOHNSICHTQUALITÄT
        (HOLZART = HOLZART HOLZ-BETON-VERBUNDELEMENTES)
(1)
31.0
übliche Plattenformate stabverleimte Platte 1.25 x 3.00 / 2.05 x 5.00
(ZW01) WAND INNEN HBV (55dB)
(1)
[cm]
10.0
        BETONPLATTE des HBV-ELEMENTES
32.0
       STEHER des HBV-ELEMENTES
        dazwischen FASERDÄMMSTOFF
01.9
       STABVERLEIMTE PLATTE – OBERFLÄCHE WIE KREUZLAGENHOLZ
        (Erhältlichkeit geklärt),
                               WOHNSICHTQUALITÄT
        (HOLZART = HOLZART HOLZ-BETON-VERBUNDELEMENTES)
(1)
33.9
```

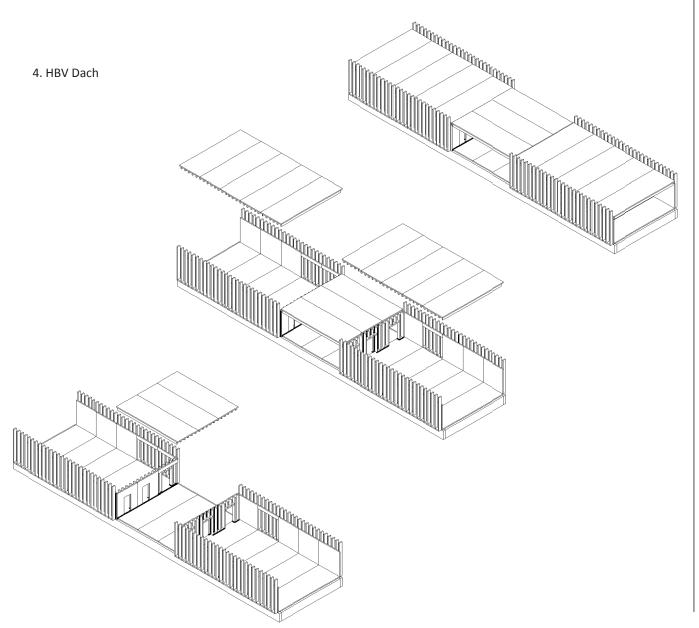
AW01	Wand gegen Außenluft - H	HBV Hol	zfaser						
No-man-III-	an an			von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
Normalbet Riegel daz					24,0 %		0,1000	1,710 0,120	0,058 0,640
	ser-Dämmplatte (100 < roh < =	160 kg/m	³)		76,0 %		0,3200	0,048	5,067
	W-Fluss n. oben 36 < d < = 4	0 mm		*			0,0400	0,250	0,160
Polycarbo	natstegplatte 30 mm			# *		Dicke	0,0300 0,4200	0,030	0,990
	RTo 5,2854	RTu :	5,2204	RT 5,2529	D	icke gesamt		U-Wert	0,19
Riegel:	Achsabstand	0,500	Breite	0,120		Rse	+Rsi 0	,26	
EB01	Decke, erdberührt								
	2001.0, 0. 0.00.0			von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
	assivlehm 2000 kg/m³			F #			0,1200	1,000	0,120
Stahlbetor	. Schaumglasschotter						0,0400	0,080 2,500	0,500
	bahn Polyethylen (PE)						0,0100	0,040	0,250
-	asplatte (105 < roh < = 120 kg/i	m³)					0,2400	0,045	5,333
Polymerbi Baupapier	tumen-Dichtungsbahn			#			0,0100 0,0003	0,230 0,170	0,043 0,002
	s jeweils lufttrocken						0,1500	0,700	0,214
Vlies PP							0,0002	0,220	0,001
DD01	Dooks gogen Auftenlieft	цру		Rse+Rsi = 0,17	Di	cke gesamt	0,7705	U-Wert	0,15
וויטטט	Decke gegen Außenluft -	пву		von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
	niersperrholz			_ #			0,0240	0,440	0,055
	nittholz Nadel, rauh, techn. getr NOOL Sonorock	. dazw.		F F	25,7 % 74,3 %		0,0850	0,120 0,040	0,182 1,579
	mse Polyethylen (PE)			г	74,3 %		0,0002	0,500	0,000
Normalbet	on						0,1000	1,710	0,058
	nittholz Nadel, gehobelt, techn. ser-Dämmplatte (160 < roh < =)	0			24,0 % 76,0 %		0,3200	0,120 0,050	0,640 4,864
	nittholz Nadel, gehobelt, techn.		,		70,0 /6		0,0240	0,030	0,200
	bahn Polyethylen (PE)	J		#			0,0002	0,500	0,000
Uola Cob	RTo 7,2799	RTu (RT 6,9989	Di	cke gesamt		U-Wert	0,14
	nittholz Nadel, Achsabstand inittholz Nadel, Achsabstand	0,498 I 0,500 I		0,128 0,120		RSE	+Rsi 0	,21	
FD01	Dach HBV								
				von Außen nac	ch Innen	Dichte	Dicke	λ	d/λ
Vlies PES	astomerbitumen-Wurzelschutzb	ahnen					0,0100	0,500 0,170	0,020 0,059
	tumen-Dichtungsbahn	amen		#			0,0100	0,170	0,033
	bahn Polyethylen (PE)			#			0,0018	0,500	0,004
	THERM XPS TOP 70 THERM EPS W30 PLUS						0,0200 0,2800	0,038 0,030	0,526 9,333
ISOVER V				#			0,0020	0,200	0,010
Normalbet							0,1000	1,710	0,058
	nittholz Nadel, gehobelt, techn. h., W-Fluss n. oben d > 200 mi		W.	# * # *	24,0 % 76,0 %		0,3200	0,120 1,560	0,640 0,156
							0,4338		-,
Holz - Sch	RTo 4,6648 nittholz Nadel, Achsabstand	RTu (0,500 l		RT 2,3324 0,120	D	icke gesamt	: 0,7538 +Rsi 0	U-Wert	0,10
		0,500	Dicito	0,120		1130	.1131 0	, 1 -	
ZW03	WAND INNEN (55dB)			von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
CLT - cros	s laminated timber						0,0570	0,120	0,475
	Dämmplatte (100 < roh < = 160	kg/m³)					0,0750	0,048	1,563
Gipskartor	nplatte Dämmplatte (100 < roh < = 160) ka/m³\					0,0150 0,0750	0,210 0,048	0,071 1,563
	s laminated timber	, ng/III)					0,0750	0,048	0,733
				Rse+Rsi = 0,26	Di	cke gesamt	0,3100	U-Wert	0,21
ZW01	WAND INNEN HBV (55dB))		von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
Normalbet	on			VOIT IIIIICII IIICI	Auscil	Dicinic	0,1000	1,710	0,058
Holz - Sch	nittholz Nadel, rauh, techn. getr				10,0 %		0,3200	0,120	0,267
Holzfas ZW01	ser-Dämmplatte (100 < roh < =		³)		90,0 %			0,048	6,000
24401	WAND INNEN HBV (55dB)			von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
Normalbet							0,1000	1,710	0,058
	nittholz Nadel, rauh, techn. getr ser-Dämmplatte (100 < roh < =		3\		10,0 %		0,3200	0,120	0,267
	nittholz Nadel, gehobelt, techn.	-)		90,0 %		0,0190	0,048 0,120	6,000 0,158
	RTo 6,3371	RTu (RT 6,3055	Di	cke gesamt	0,4390	U-Wert	0,16
Holz - Sch	nittholz Nadel, Achsabstand	0,800	Breite	0,080		Rse	+Rsi 0	,26	
ZW02	WAND INNEN (38dB)			von Innen nach	n Außen	Dichte	Dicke	λ	d/λ
CLT - cros	s laminated timber						0,0570	0,120	0,475
	Dämmplatte (100 < roh < = 160						0,0500	0,048	1,042
rioiz - Sch	nittholz Nadel, gehobelt, techn.	getr.		Rse+Rsi = 0,26	Di	cke gesamt	0,0190 0.1260	0,120 U-Wert	0,158 0,52
				0,20	וט	one gesanit	3, 1200	J	0,52

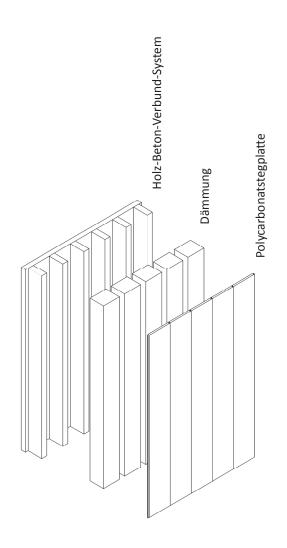

Dicke ... wärmetechnisch relevante Dicke Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m²], \[\lambda_{\text{[W/mK]}} \] \[


Aufbauten **U-Wert**

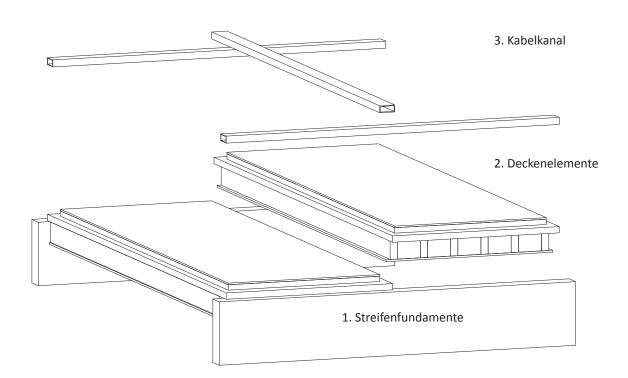
Gesamtschnitt


Maßstab 1:20. Typ 2


Typ 2 wird beispielhaft für die folgenden Regeldetails und Berechnungen herangezogen.



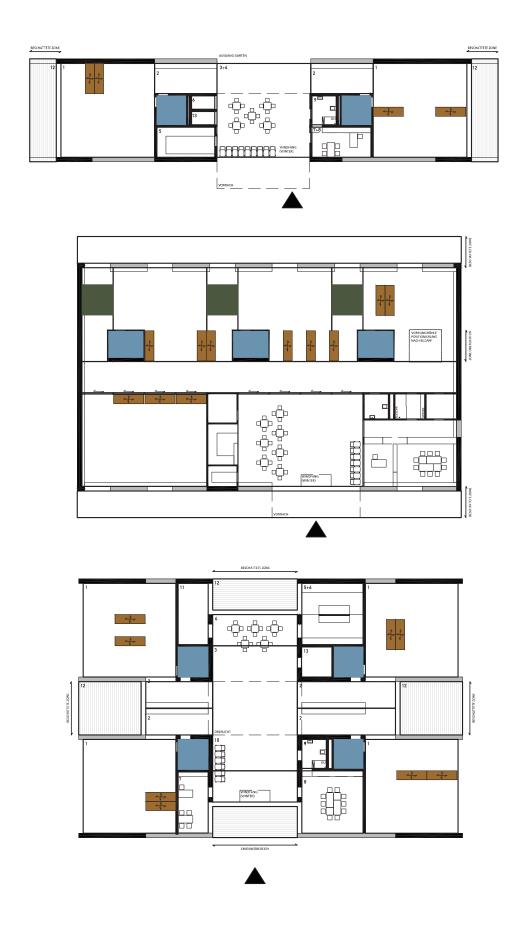
Montage Typ2

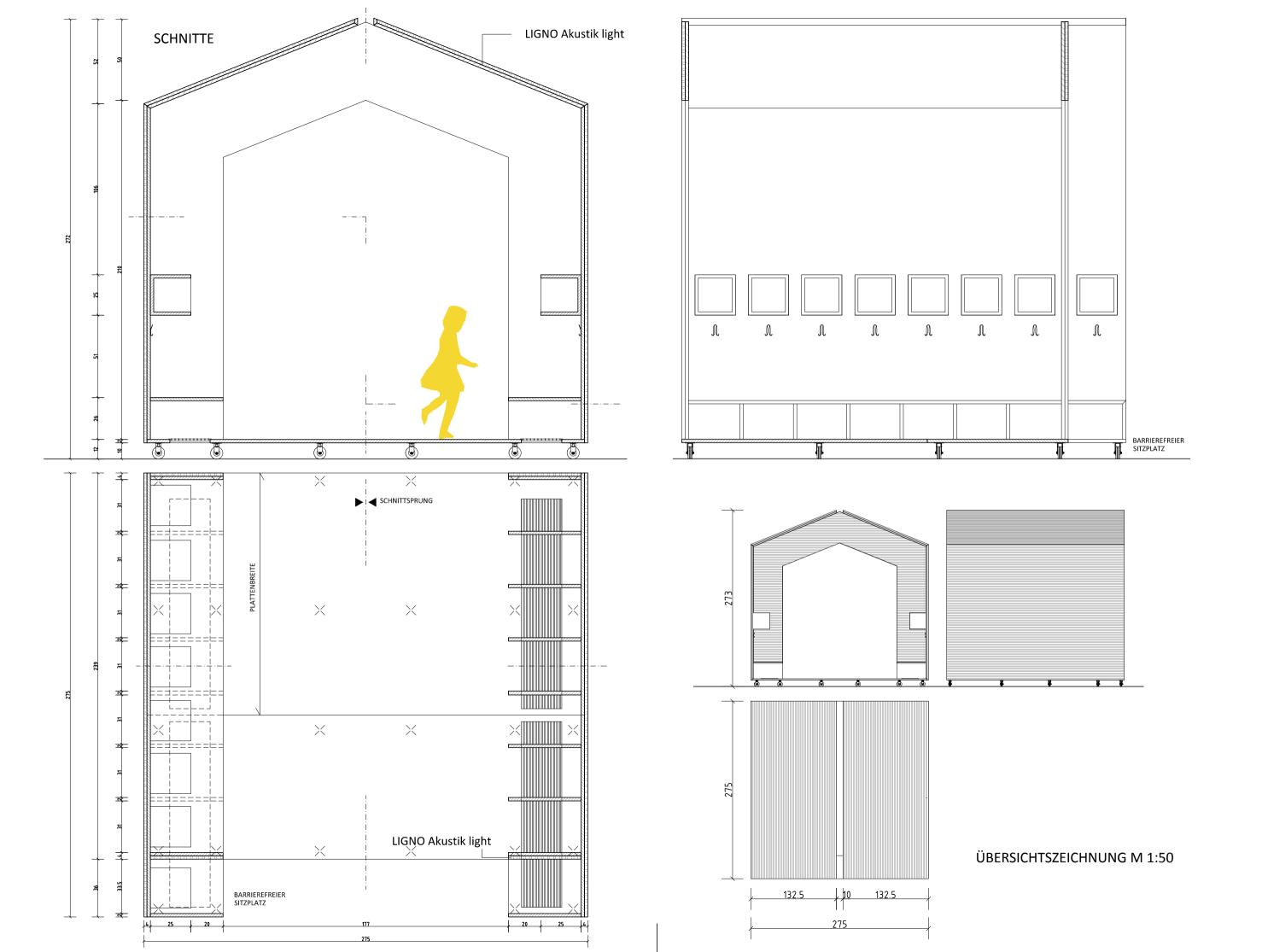


Elemente des Wandaufbaus von Innen nach Aussen:

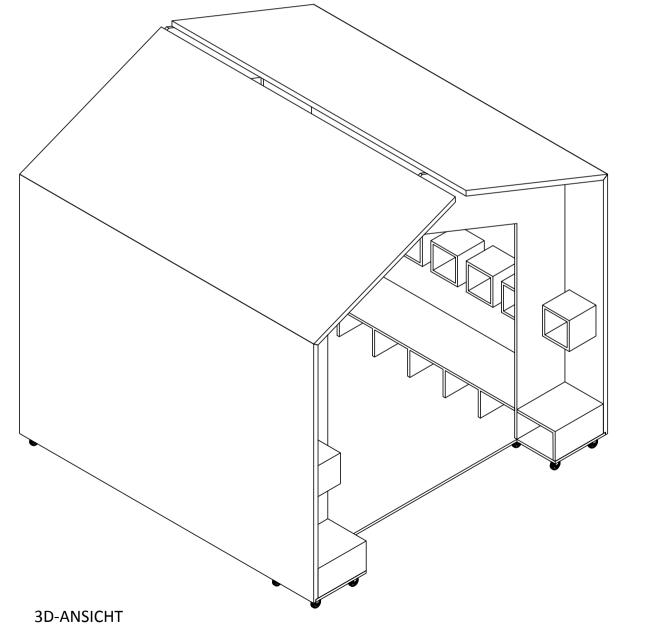
- HBV
- Dämmung (Hinterlüftung) Stegplatte

Montage der Deckenelemente über Kriechkeller:

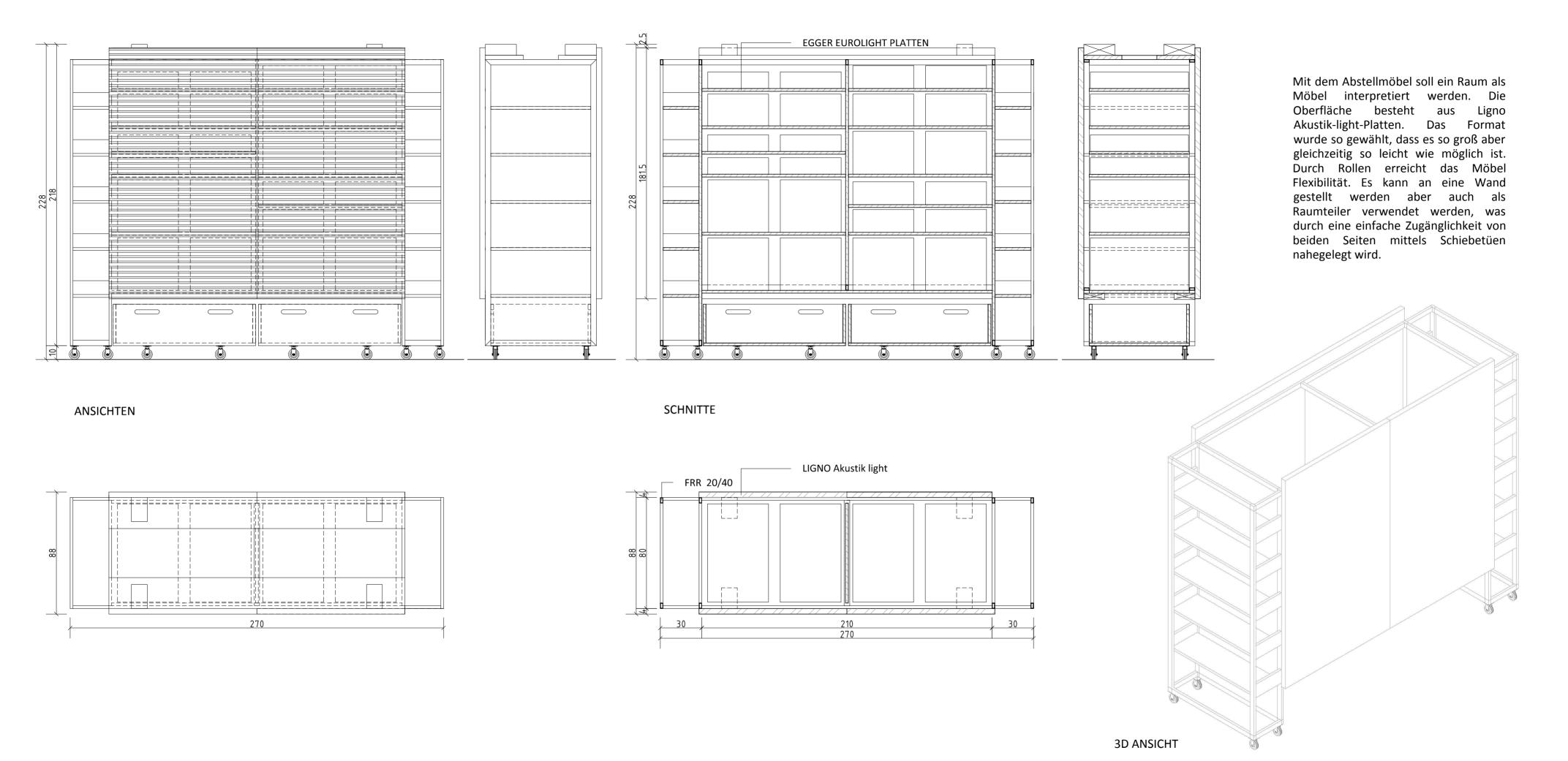

- Auflegen der fertigen Elemente (mit Fertigfußboden) auf den Fundamenten
- Verschluß der Fugen mit Dichtungsband
- Einlegen des Kabelkanals
- Zusammenschliessen der Betonaktivierung in Dämmebene


Möbel als Raumersatz

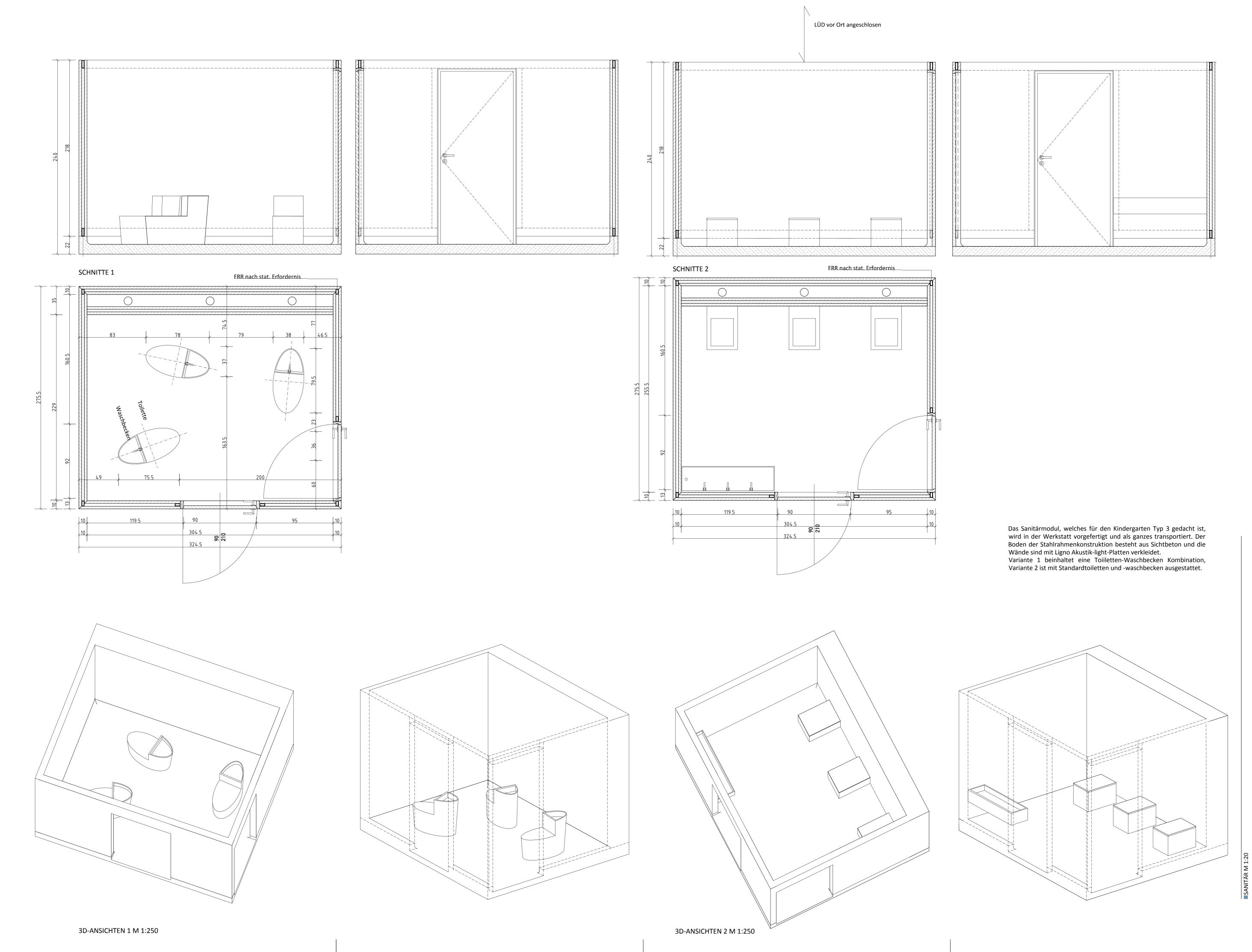
LEGENDE:


- Sanitär
- **■** Garderobe
- Abstellmöbel

Modul Garderobe

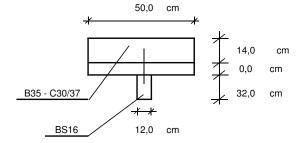


Die durch Rollen verschiebbare Garderobe beinhaltet Plätze für 16 Kinder, darunter zwei barrierefreie für köperlich oder geistig beeinträchtigte Kinder. Die Oberfläche besteht aus Ligno Akustik-light-Platten. Unter den Sitzflächen befinden sich Schuhablagen aus Gittern, damit darunter problemlos gewischt werden kann ohne die Schuhe wegzustellen. Lichtzufuhr bekommt das Garderobenmodul durch eine Öffnung im Dach, welche das ganze für die Kinder hölen-artig wirken lässt.



Abstellraum

Sanitär



BERECHNUNGEN

Statik

System: Spannweite I

Bemessung:

Balkenabstand / Elementbreite e 50,0 cm gesamte Deckenbreite b_{ges} 3080,0 cm Länge HBV-Schubverbinder $I_{\rm SV}$ 100,0 cm erf. Länge HBV-Schubverbinder / Element #DIV/0! cm #DIV/0! erf. Länge HBV-Schubverbinder / m² cm/m² Plattengewicht 2175,04 kg

Lastannahmen:

Eigengewicht Beton=3,50kN/m²Eigengewicht Holz=0,38kN/m²zusätzliche ständige Belastung=2,34kN/m²Verkehrslast=3,20kN/m²

 $\Sigma q = 9,42 kN/m^2$

auf Elementbreite / Balkensabstand bezogen = 9,42 kN/m² x 0,50

= 4,71 kN/m

Statik:

Material:

Verschiebungsmodul [N/mm]

Schubkraft [N]

P.Kneidinger statische **Vorbemessung** Streckmetal Schubverbinder

			Kaitbei	messung					
Spannungen:			orhanden [kN/o	t = 0	stung []	vorhanden [kN/cr	$t = \infty$ m^2] Auslastun	n []	
	Beton ober		-0,96	-	.88	-0,63	0,58		
	Beton unte		0.30		ıtzbew.	-0.05	0,05		
	Holz oben		0,10		,07	-0,07	0,05		
	Holz Schwe	erpunkt	0,60	0	,46	0,62	0,48	}	
	Holz unten		1,11	0	,69	1,31	0,82	2	
Feldbewehrung:	erf a _{st}	[cm²]	gev	wählt	vorh	a _{st} [cm²]	Auslastung		
_	t = 0	t = ∞	Anzahl	Matte	Matte	Element			
	0,86	0,00	1	Q 257 A	2,57	1,29	21,54		
Stützbewehrung:	erf a.,	[cm²]	ge/	wählt	vorh	a _{st} [cm ²]	Auslastung		
- ·· ·· · · · · · · · · · · · · · · ·	t = 0	t = ∞	Anzahl	Ø	Stück	Ot -			
	0,00	0,00	0	10	0,79	0,00	0,00		
Abstände der		t = 0				t = ∞			
Verbindungsmittel:	erf. e' [cm]	vorh. e' [cm]	Auslas	tung erf.	e' [cm]	vorh. e' [cm]	Auslastung		
	113,06	20,00	0,1	8 10	9,46	20,00	0,18		
effektive Steifigkeit:		se der Tragfähig I _{eff} [cm ⁴]		für Nachw Gebrauchstaugli		4]			
	t = 0	t = ∞		t = 0	t = ∞	•			
	233489	171466	5	234104	172060				
Schubspannung in der Ebene y-y:	vorhanden [kl	-	-	t =	²] Auslastur	g			
	0,067	0,51		0,069	0,53				
Auflagerpressung:	$\text{vorh } \sigma_{_{D\perp}}$	[kN/cm²]	$zul\ \sigma_{_{D\perp}}$	[kN/cm²]	Auslastun	ıg			
	0,2	21	0	,25	0,85				
Verformungen:		f _p [cm]	f _g [c	m] f _s	[cm]	f _{gesamt} [cm]	Ausla	stung	
	t = 0	1,17	2,2		,47	3,91	L/ 286	1,0	
	t = ∞	1,17	3,6	8 1	,14	6,46	L/ 173	1,7	
	Überhöh	iung notwendig!	!!>	gewählte	Überhöhur	ng max ü =	1,50		
			-1						
		f _{gesamt} [cn	nj	Auslastung					
	t = 0	t _{gesamt} [cn 2,41		-	,43				

TKNEI.001

Schall:	erf. R' _{w,R} [dB 54	uftschalldä] R' _{w.R} [di 56	B] Ausl	lastung ,96	L',	_{,w,R} [dB] 53		dämmn _{.R} [dB] 49	Auslastung 0,92	
Sobwingungon					vorb	anden	Δ.	uslastung		
Schwingungen:	Durchbiegung kleinste Eiger	infolge quasis frequenz f _{1,1} :	tändiger Gleic	hlast:	2,62 3,51	cm Hz		4,37 2,28		
	Schwingbesch	ersuchung erfo nleunigung für nleunigung für	Wohlbefinden		ja 0,02 0,02	m/s m/s		0,23 0,06		
	Durchbiegung	infolge F = 1k	N:		0,16	mn	n	0,16		
		sgeschwindigk eitsreaktion int		uftritt:	0,0001 #REF!			0,01 #REF!		
			Brandbe	emessung	<u> </u>					—
Feuerwiderstands- klasse:	F 90-B									
Temperatur in der Klebefuge:		rh ⊚ [℃] 513,86	Ž	zul		Auslasti 10,2	•			
Spannungen:				t = 0				t = ∞		
	Beton ober		vorhanden [kN/d	cm²] Aus	slastung [] 4,13	vo	rhanden [kN/d	cm²]	Auslastung [] 4,13	
	Beton unte		4,52	Zu	satzbew.		4,52		Zusatzbew.	
	Holz oben		0,00		0,00		0,00		0,00	
	Holz Schwe Holz unten	erpunkt	0,00 0,00		0,00 0,00		0,00 0,00		0,00 0,00	
Feldbewehrung:	erf a _s ,	[cm²]	gev	wählt	v	orh a	t [cm²]	Au	slastung	_
-	t = 0 27,68	t = ∞ 27,68	Anzahl 1	Matte Q 257 A		atte 57	Element 1,29		 21,54	
Stützbewehrung:	erf a _{st}	[cm²]	ge/	wählt	v	orh a	; [cm²]	Au	slastung	
- · · · · · · · · · · · · · · · · · · ·	t = 0	$t = \infty$	Anzahl	Ø	Sti	ück	Element			
	0,00	0,00	0	10	0,	79	0,00		0,00	
Abstände der		t = 0		<u> </u>		t	: = ∞			
Verbindungsmittel:	erf. e' [cm] 0,00	vorh. e' [cm 20,00	Auslas 0,0	-	erf. e' [cm] 0,00		h. e' [cm] 20,00	Auslast 0,00	-	

	6.3 Verformungen			1 - Beton	2 - Holz
auf Elementbreite	Σ ständige Lasten	g	kN/m	3,1	1
bezogen	Σ Verkehrslasten	р	kN/m	1,6	60
bezogen	Σ Gesamtlasten	q	kN/m	4,7	71
Verhältni	s ständige Lasten / Gesamtlast	g/q		0,6	66
	Schubmodul Holz	G	kN/cm ²		65
Ela	astizitätsmodul Holz, t = 0	E _{, t=0}	kN/cm ²		1200
(Querschnittsfläche Holz	A ₂	cm ²		384
	A least to allow an array and a	k		0,045	
	Abminderungswerte	γ_{i}		0,957	
wirksam	es Flächenmoment 2. Grades	ef I	cm⁴	234	104
	Verformung infolge p	f _{p,t=0}	cm	1,1	17
	Verformung infolge g	f _{g,t=0}	cm	2,2	27
Grur	ndschwindmaß des Betons	$\epsilon_{_{so}}$		0,00	010
Elas	tizitätsmodul Beton, t = 28	E _{1,t=28}	kN/cm ²	3400	
Abstand zwischen o	den neutralen Achsen der Teilquerschnitte	а	cm	23	,0
Normalkraft infolge	Schwinden (Zug im Beton, Druck im Holz)	F _o	kN	228	,48
		е	cm	3,	7
auf den Holzque	rschnitt wirkende Schwind-Normalkraft	F ₂	kN	37	,1
auf den Verbund	Iquerscnitt wirkendes Schwindmoment	M _s	kNcm	852	,41
		EI _s	kNcm²	28241	7834
Zusatzverforn	nung infolge Schwinden des Betons	f _{s,t=28}	cm	0,4	17
Gesa	amtverformung t=0 f(p _o +g _o)	f _{ges,t=o}	cm	3,4	14
	chweis Verformung t = 0			0,9	92
Gesam	tverformung t=28 f(p _o +g _o +s ₂₈)	f _{ges,t=o}	cm	3,9	91
Na	chweis Verformung t = 28			1,0)5

Formeln zur Bemessung eines Holz- Beton- Verbundträgers in der Nutzungsklasse 1 und Lasteinwirkungsdauer kled mittel

Querschnittswerte ohne Verbund für Eigengewicht

Beton $A_c = b_c * h_c$ Holz $A_t = b_t * h_t$

Einwirkungen auf das Tragwerk

Eigengewicht incl. Schalung [kN/m²] $g_{k,1} = [\rho_c * A_c + \rho_t * (A_t + b_c * d_s)] / b_c$

Total kurzfristige Last pro Träger [kN / m] $p_{s,d} = 1.5 * q_k * (1 - \lambda) * b_c$

Total langfristige Last pro Träger [kN / m] $p_{l,d} = (1,35*(g_{k,1} + g_{k,2}) + 1,5*q_k*\lambda)*b_c$

Ermittliung der Gesamtsteifigkeiten

Tragsicherheit ermittelt.

2 = Tragfähigkeit

sind wie in den mittleren Vierteln $a_{sc} = (0.75 * a_{ra} + 0.25 * a_{ri}) / n_{r}$

Zeitpunkt t = 0 [N / mm] $C_{s,1} = 130 * I_{ef}$ Zeitpunkt t = 0 [N / mm] $C_{s,2} = C_{s,1} * 2 / 3$ Zeitpunkt t = unendlich [N / mm] $C_{I,1} = C_{s,1} / 1,6$ Zeitpunkt t = unendlich [N / mm] $C_{I,2} = C_{s,2} / 1,6$

Betonplatte $b_{cm} = 0.25 * l \text{ wenn } b_c > 0.25 * l; \text{ ansonsten } b_{cm} = b_c$

Trägheitsmoment Holz $I_{t} = A_{t} * h_{t}^{2} / 12$ Trägheitsmoment Beton $I_{c} = b_{cm} * h_{c}^{3} / 12$ Querschnittsfläche Beton $A_{c} = b_{cm} * h_{c}$ E- Moduli Beton gemäß EC2: $E_{c} = E_{cm} \text{ aus EC2}$

E- Moduli Beton gemäß EC2: $E_{c,s} = E_{cm} \text{ aus EC2} \\ E_{c,l} = E_{c,s} / 3,5$

E- Moduli Holz gemäß EC5: $E_{t,s} = E_{0,mpan} \\ E_{t,l} = E_{t,s}^{0,mpan}, 6$

Verhältnis der E- Moduli: $n_s = E_{c,s} / E_{t,s}$ $n_i = E_{c,t} / E_{t,t}$

Hillfsgröße k: $\begin{array}{c} k_{s,1} = \pi^2 * E_{s} * A * a_{sc} / (|I^2 * C_{s,1}|) \\ k_{s,2} = \pi^2 * E_{c,s} * A_{cm} * a_{sc} / (|I^2 * C_{s,2}|) \\ k_{l,2} = \pi^2 * E_{c,l} * A_{cm} * a_{sc} / (|I^2 * C_{l,2}|) \\ k_{l,2} = \pi^2 * E_{c,l} * A_{cm} * a_{sc} / (|I^2 * C_{l,2}|) \end{array}$

Schwerpunkt Beton $\begin{array}{l} a_{c,s,1} = h_t / 2 + h_c / 2 + d_s - a_{t,s,1} \\ a_{c,s,2} = h_t / 2 + h_c / 2 + d_s - a_{t,s,1} \\ a_{c,l,2} = h_t / 2 + h_c / 2 + d_s - a_{t,l,1} \\ a_{c,l,2} = h_t / 2 + h_c / 2 + d_s - a_{t,l,1} \end{array}$

Trägheitsmoment des Verbundquerschnitts $I_{v,s,1} = I_t + A_t * a_{t,s,1}^2 + n_s * I_c + n_s * \gamma_{s,1} * A_{cm} * a_{c,s,1}^2$

statische Vorbemessung

Schrauben Schubverbinder

$$\begin{array}{l} I_{v,s,2} = I_t + A_t^* * a_{t,s,2}^2 + n_s^* I_c^* + n_s^* \gamma_{s,2}^* * A_{cm_s}^* a_{c,2}^{-22} \\ I_{v,l,1}^{v,l,1} = I_t^t + A_t^* * a_{t,l,2}^{-1,2} + n_l^* * I_c^* + n_l^* * \gamma_{l,2}^{-1,2} * A_{cm}^* * a_{c,l,2}^{-1,2} \end{array}$$

 $a_{scd} = a_{sc} / 1,25$ Vierteln zurückgesetzt

Last auf Verbundelemente

 $\begin{matrix} T_{l,\,d} = (V_s + V_l) * \gamma_{s,^2} * n_s * a_{c,s,^2} * A_{cm} * a_{sc,d} \\ \gamma_{l,\,d} = (V_s + V_l) * \gamma_{l,\,2} * n_s * a_{c,\,l,\,2} * A_{cm} * a_{sc,d} \end{matrix}$ Einwirkung auf die Schrauben

 $T_{R,k} = 83 * I_{ef} * (\rho_k / 350) ^ 0.8$ nach Zulassung

 $T_{R,d} = 0.8 * T_{R,k} / 1.3$ und Nutzungsklasse 1

Ermittlung der maßgebenden Belastung

 $V_{I,d} = p_{s,d} * 1/2$ $V_{I,d} = p_{I,d} * 1/2$ Querkraft am Auflager

 $M_{l,d} = p_{s,d} * l^2 / 8$ $M_{l,d} = p_{l,d} * l^2 / 8$ Moment in Feldmitte

Ermittlung der Spannungen

 $\begin{array}{l} \sigma \\ \sigma^{c,s,o,d}_{c,l,o,d} = \left[\left(M^{s,d}_{c} + M^{l,d}_{l,d}\right)^{*} + n^{s} * \left(\gamma_{s,2}^{s} * a_{c,s,2}^{c,s,l} + h^{c}/2\right)\right] / I_{v,s,2}^{v,s,d} \\ \sigma^{c,s,u,d}_{c,l,o,d} = \left[\left(M^{s,d}_{s,d} + M^{l,d}_{l,d}\right)^{*} * n^{s} * \left(\gamma_{s,2}^{s} * a_{c,s,2}^{c,s,2} - h^{c}/2\right)\right] / I_{v,l,2}^{v,s,2} \\ \sigma^{c,l,o,d}_{c,l,u,d} = \left[\left(M^{s,d}_{s,d} + M^{l,d}_{l,d}\right)^{*} * n^{l}_{l} * \left(\gamma_{l,2}^{l} * a_{c,l,2}^{c,l,2} - h^{c}_{c}/2\right)\right] / I_{v,l,2}^{v,l,2} \end{array}$ Spannungen im Beton o = oben u = unten

 $\begin{array}{l} \boldsymbol{\sigma}_{t,s,o,d} = \begin{bmatrix} \left(M_{s,d} + M_{l,d}\right) * \left(a_{t,s,2} + h_{t}/2\right) / I_{v,s,2} \\ \left(M_{s,d} + M_{l,d}\right) * \left(a_{t,s,2} - h_{t}/2\right) / I_{v,s,2} \end{bmatrix} \\ \boldsymbol{\sigma}_{t,l,o,d}^{t,l,c,d} = \begin{bmatrix} \left(M_{s,d} + M_{l,d}\right) * \left(a_{t,l,2} + h_{t}/2\right) / I_{v,l,2} \\ \left(M_{s,d} + M_{l,d}\right) * \left(a_{t,l,2} - h_{t}/2\right) / I_{v,l,2} \end{bmatrix} \end{array}$ Spannungen im Holz o = oben u = unten

 $\tau_{td} = 1.5 * (V_{sd} * V_{td}) / (b_{t} * h_{t})$ Schubspannung Holz

Durchbiegung zum Zeitpunkt unendlich

 $\delta_{l} = 5 * [p_{l,k} / (l_{v,l,1} * E_{t,l}) + p_{s,k} / (l_{v,s,1} * E_{t,s})] * l^{4} / 384$

Die Gültigkeit der Ergebnisse bedingt die Einhaltung folgender Punkte:

- 1. Der Holzträger wird im Bauzustand (t = 28 Tage) im mittleren Drittel unterstützt oder aufgehängt. Ausnahme: siehe Blatt 2 dieser Tabelle!
- 2. Die Bewehrung entspricht mindestens einer Betonstahlmatte Q 188.
- 3. Bei Betonstärken von über 10 cm ist eine Bügelbewehrung gemäss Anlage 3 zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-9.1-445 anzuordnen.
- 4. Die Timco® II Schrauben sind mit 45° gegen das nähere Auflager hin geneigt.
- 5. Die Timco® II Schrauben sind ohne Vorbohren einzudrehen.

Weitere Kriterien:

- Der Zustand der Balkenköpfe im Auflager ist geprüft.
- Bauzustände sind gesondert zu prüfen.
- Zwischen der Betonplatte und den Holzbauteilen kann zum Schutz des Holzes vor Feuchtigkeit eine Trennlage eingebaut werden.

Ermittlung der Durchbiegungen:

Eigenlast des Tragwerks (ohne Betoniermannschaft und Betonanhäufungen) bezüglich Steifigkeit Holzquerschnitt. - im Bauzustand:

- unter ständigen Lasten: Eigenlast + Auflast + langfristige Nutzlast bezüglich Steifigkeit Verbundquerschnitt langfristig.

- unter kurzfristigen Lasten: Kurzfristige Nutzlast bezüglich Steifigkeit Verbundquerschnitt kurzfristig.

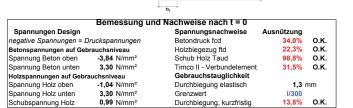
- maximale Durchbiegung: Summe der Teildurchbiegungen.

TIMCO.001

Spannung Holz unten

Schubspannung Holz

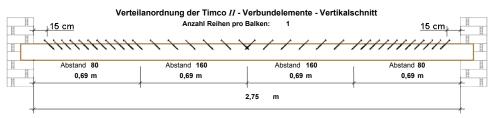
nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2



10,0 cm

- Lasten ohne Beiwerte eingeben Das Eigengewicht des Tragwerks wird automatisch berücksichtigt

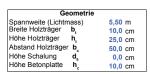
Auflast
2,3 2.34 kN/m² 3,20 kN/m² 30 % ständiger Anteil NL


	Baus	toffe
Holz		C24
Beton	Ø 16mm	C20/25
	Timco II V	/orbindor
l		
Abstan	nd	80,0 mm

Durchbiegung, kurzfristig

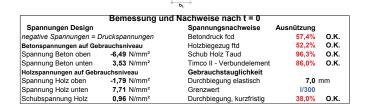
	Bernessung und	Nachweise nach t = oo		
Spannungen Design		Spannungsnachweise	Ausnützung	
negative Spannungen = D	Druckspannungen	Betondruck fcd	24,3%	O.K.
Betonspannungen auf Geb	rauchsniveau	Holzbiegezug ftd	31,9%	O.K.
Spannung Beton oben	-2,74 N/mm ²	Schub Holz Taud	98,8%	O.K.
Spannung Beton unten	1,98 N/mm ²	Timco II - Verbundelement	44,0%	O.K.
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben	-1,56 N/mm ²	Durchbiegung	2,4 r	nm
Spannung Holz unten	4,71 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,99 N/mm ²	Durchbiegung, langfristig	26,3%	O.K.

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

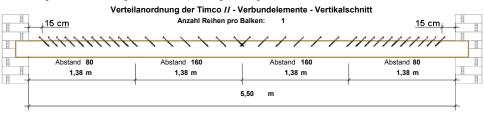


Verteilung der Verbundschrauben Anzahl Reihen pro Balken Abstand in den äusseren Vierteln **80** mm Abstand in den mittleren Vierteln 160 mm Anzahl Schrauben pro Balken 24 Stück Anzahl Schrauben pro m² **17,5** Stück

		-					AH 1 1111	141 1	_
	ZWISC	nenre	esultate der Berechnung zu	t = 0			Allgemeingülti	ge Werte	
Materialeigenschaften		H		Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29.0	kN/mr	m²	sicherheit	tauglichkeit		Eigengewicht Tragwerk		kN/m²
E-Modul Holz	11.0	kN/mr	m² Timco II Werte		Ť		Ständige Lasten	5.92	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	22.28	14.85		massgebende Sc	hnittkräfte	
Verbundelement Td	1,58		Hilfsgrösse γ	0,04	0,06		Moment Md		kNm
							Querkraft Vd	7,90	kN
			Verbundquerschnittswer	rte			Last auf Verbinder Td	2,20	kN
			Abstand Holz-VerbundsSP	41,68	53,21	mm			
			Abstand Beton-VerbundsS	SP 88,32	76,79	mm			
			Trägheitsmoment	2,00E+08	2,18E+08	mm ⁴	Querschnitts	werte	
							Fläche Holz	12000	mm ²
							Fläche Beton	50000	mm²
	Zwisch	enres	sultate der Berechnung zu t	= 00			mitwirkende Betonbreite	50	cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	2,56E+07	mm ⁴
E-Modul Beton	8,3	kN/mr	m²	sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mr	m² Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spa	nnungen	
Timco II Werte			Hilfsgrössen				Raumgewicht Beton	25,0	kN/m³
Verbundelement Trd	5,01	kN	Hilfsgrösse k	10,19	6,79		Raumgewicht Holz		kN/m³
Verbundelement Td	2,20	kN	Hilfsgrösse γ	0,09	0,13		Druckspannung Beton frcd	-11,3	N/mm
							Biegespannung Holz fmrd	14,8	N/mm
			Verbundquerschnittswer	rte			Schubspannung Holz fvrd	1,2	N/mm
			Abstand Holz-VerbundsSP	40,28	50,95	mm			
			Abstand Beton-VerbundsS	SP 89,72	79,05	mm			
			Trägheitsmoment	1.39E+08	1.55E+08	mm ⁴			



nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2


Lasten
- Lasten ohne Beiwerte eingeben
- Das Eigengewicht des Tragwerks
wird automatisch berücksichtigt
Auflast
Nutzlast
3,20 kN/m²
ständiger Anteil NL
30 %

Baus	toffe
Holz	C24
Beton Ø 16mm	C20/25
Timco II V	erbinder 80,0 mm

	Bemessung und	Nachweise nach t = oo		
Spannungen Design		Spannungsnachweise	Ausnützung	
negative Spannungen = D)ruckspannungen	Betondruck fcd	38,1%	O.K.
Betonspannungen auf Geb	rauchsniveau	Holzbiegezug ftd	59,7%	O.K.
Spannung Beton oben	-4,31 N/mm ²	Schub Holz Taud	96,3%	O.K.
Spannung Beton unten	1,12 N/mm ²	Timco II - Verbundelement	92,6%	O.K.
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben	-2,44 N/mm ²	Durchbiegung	11,6 r	nm
Spannung Holz unten	8,81 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,96 N/mm ²	Durchbiegung, langfristig	63,1%	O.K.

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

 Verteilung der Verbundschrauben

 Anzahl Reihen pro Balken
 1

 Abstand in den äusseren Viertein
 80 mm

 Abstand in den mittleren Viertein
 160 mm

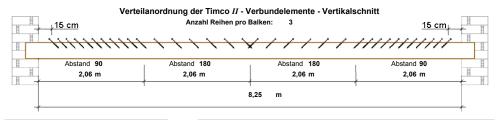
 Anzahl Schrauben pro Balken
 50 Stück

 Anzahl Schrauben pro m²
 18,2 Stück

		\vdash		L. .						
	ZWISC	nenre	sultat	e der Berechnung zu t =	0			Allgemeingült	ge Werte	
Materialeigenschaften					Trag-	Gebrauchs-		Aufteilung der	r I seton	
F-Modul Beton	29.0	kN/mr	n²		sicherheit	tauglichkeit		Eigengewicht Tragwerk		kN/m²
E-Modul Holz		kN/mr		Timco II Werte	GIGITOTTOR	taagiioriitoit		Ständige Lasten		kN/m²
Wertigkeit Beton (n)	2,6			versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte				Hilfsgrössen					_	
Verbundelement Trd	5,01	kN		Hilfsgrösse k	5,57	3,71		massgebende So	hnittkräfte	
Verbundelement Td	4,30	kN		Hilfsgrösse γ	0,15	0,21		Moment Md	22,07	kNm
								Querkraft Vd	16,05	kN
				Verbundquerschnittswerte				Last auf Verbinder Td	4,64	kN
				Abstand Holz-VerbundsSP	77,91	92,40	mm			
				Abstand Beton-VerbundsSP	97,09	82,60	mm			
				Trägheitsmoment	5,81E+08	6,44E+08	mm ⁴	Querschnitts	werte	
								Fläche Holz	25000	mm ²
								Fläche Beton	50000	mm ²
	Zwisch	enres	sultate	der Berechnung zu t =	00			mitwirkende Betonbreite	50	cm
								mitwirkende Betonfläche	50000	mm2
Materialeigenschaften					Trag-	Gebrauchs-		Trägh.moment Holz	1,30E+08	mm ⁴
E-Modul Beton		kN/mr			sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mr	n²	Timco II Werte						
Wertigkeit Beton (n)	1,2			versch. Modul	5,31	7,96	kN/mm			
								Gewichte & Spa	innungen	
Timco II Werte				Hilfsgrössen				Raumgewicht Beton	25,0	kN/m ³
Verbundelement Trd	5,01	kN		Hilfsgrösse k	2,55	1,70		Raumgewicht Holz	3,5	kN/m ³
Verbundelement Td	4,64	kN		Hilfsgrösse γ	0,28	0,37		Druckspannung Beton frcd	-11,3	N/mm
								Biegespannung Holz fmrd	14,8	N/mm
				Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm
				Abstand Holz-VerbundsSP	70,81	82,58	mm			

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

Lasten
- Lasten ohne Beiwerte eingeben
- Das Eigengewicht des Tragwerks
wird automatisch berücksichtigt
Auflast
Nutzlast
3,20 kN/m²
ständiger Anteil NL
30 %



Spannungen Design		Spannungsnachweise	Ausnützung	
negative Spannungen = L	Druckspannungen	Betondruck fcd	72,3%	O.K.
Betonspannungen auf Gel	orauchsniveau	Holzbiegezug ftd	69,1%	O.K.
Spannung Beton oben	-8,18 N/mm ²	Schub Holz Taud	98,4%	O.K.
Spannung Beton unten	1,17 N/mm ²	Timco II - Verbundelement	50,9%	O.K
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben	-0,79 N/mm ²	Durchbiegung elastisch	15,6	mm
Spannung Holz unten	10,20 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,98 N/mm ²	Durchbiegung, kurzfristig	56,6%	O.K.

	Bemessung und	Nachweise nach t = oo		
Spannungen Design	_	Spannungsnachweise	Ausnützung	
negative Spannungen = L	Druckspannungen	Betondruck fcd	53,4%	O.K.
Betonspannungen auf Gel	orauchsniveau	Holzbiegezug ftd	76,3%	O.K.
Spannung Beton oben	-6,03 N/mm ²	Schub Holz Taud	98,4%	O.K.
Spannung Beton unten	-0,89 N/mm ²	Timco II - Verbundelement	50,3%	O.K.
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben	-1,96 N/mm ²	Durchbiegung	26,3 1	mm
Spannung Holz unten	11,27 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,98 N/mm ²	Durchbiegung, langfristig	95,7%	O.K.

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

 Verteilung der Verbundschrauben

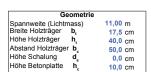
 Anzahl Reihen pro Balken
 3

 Abstand in den äusseren Vierteln
 90 mm

 Abstand in den mittleren Vierteln
 180 mm

 Anzahl Schrauben pro Balken
 198 Stück

 Anzahl Schrauben pro m²
 48,0 Stück


	Zwisc	henresu	Itate der Berechnung zu t =	: 0			Allgemeingülti	ge Werte	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29,0	kN/mm²		sicherheit	tauglichkeit		Eigengewicht Tragwerk	2,87	kN/m²
E-Modul Holz	11,0	kN/mm²	Timco II Werte				Ständige Lasten	6,17	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,93	0,62		massgebende Sc	hnittkräfte	
Verbundelement Td	2,55	kN	Hilfsgrösse γ	0,52	0,62		Moment Md	50,35	kNm
							Querkraft Vd	24,41	kN
			Verbundquerschnittswerte				Last auf Verbinder Td	2,55	kN
			Abstand Holz-VerbundsSP	132,76	140,71	mm			
			Abstand Beton-VerbundsSP	72,24	64,29	mm			
			Trägheitsmoment	1,42E+09	1,48E+09	mm ⁴	Querschnitts	werte	
							Fläche Holz	37200	mm ²
							Fläche Beton	50000	mm²
	Zwisch	enresul	tate der Berechnung zu t =	00			mitwirkende Betonbreite	50	cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	2,98E+08	mm ⁴
E-Modul Beton	8,3	kN/mm²		sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm²	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spa	nnungen	
Timco II Werte			Hilfsgrössen				Raumgewicht Beton	25,0	kN/m³
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,42	0,28		Raumgewicht Holz	3,5	kN/m³
Verbundelement Td	2,52	kN	Hilfsgrösse γ	0,70	0,78		Druckspannung Beton frcd	-11,3	N/mm²
							Biegespannung Holz fmrd	14,8	N/mm²
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm²
			Abstand Holz-VerbundsSP	109,08	114,40	mm			
			Abstand Beton-VerbundsSP	95,92	90,60	mm			
			Trägheitsmoment	1,18E+09	1,22E+09	mm ⁴			

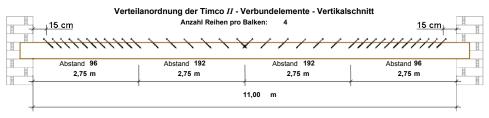
Schubspannung Holz

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

0,72 N/mm²

Lasten - Lasten ohne Beiwerte eingeben - Das Eigengewicht des Tragwerks wird automatisch berücksichtigt
Auflast 2,34 kN/m²
Nutzlast 3,20 kN/m² Auflast Nutzlast ständiger Anteil NL 30 %

	Baus	toffe				
Holz		C24				
Beton	Ø 16mm	C20/25				
Timco II Verbinder						
Abstar	nd	24,0 FUSILIO				

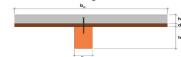

Bemessung und Nachweise nach t = 0 Spannungen Design negative Spannungen = Druckspannungen Spannungsnach Betondruck fcd Ausnützung 77,0% 60,9% O.K. O.K. O.K. O.K. Beton oben Spannung Beton unten -1,78 N/mm² Holzbiegezug ftd Schub Holz Taud Timco II - Verbundelement Gebrauchstauglichkeit 72,4% 45,7% Holzspannungen auf Gebra Spannung Holz oben Spannung Holz unten chsniveau -1,51 N/mm² 8,99 N/mm² Durchbiegung elastisch Grenzwert 20,8 mm I/300 56,6% O

Durchbiegung, kurzfristig

O.K

Bemessung und Nachweise nach t = oo									
Spannungen Design		Spannungsnachweise	Ausnützung						
negative Spannungen =	Druckspannungen	Betondruck fcd	60,4%	O.K.					
Betonspannungen auf G	ebrauchsniveau	Holzbiegezug ftd	68,0%	O.K.					
Spannung Beton oben	-6,82 N/mm ²	Schub Holz Taud	72,4%	O.K.					
Spannung Beton unten	-2,85 N/mm ²	Timco II - Verbundelement	42,2%	O.K.					
Holzspannungen auf Geb	orauchsniveau	Gebrauchstauglichkeit							
Spannung Holz oben	-3,13 N/mm ²	Durchbiegung	36,6 :	mm					
Spannung Holz unten	10,04 N/mm ²	Grenzwert	1/300						
Schubspannung Holz	Sachipeanieue	Durchbiegung, langfristig	Datum.99,9%	O.K.					

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

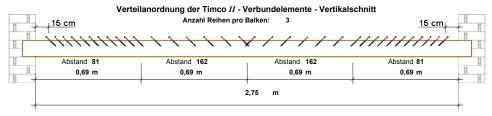


Verteilung der Verbundschrauben Anzahl Reihen pro Balken Abstand in den äusseren Vierteln 96 mm Abstand in den mittleren Vierteln Anzahl Schrauben pro Balken 336 Stück Anzahl Schrauben pro m² **61,1** Stück

	Zwiec	honroei	ultate der Berechnung zu t =	0			Allgemeingülti	an Worte	
	2111301	10111030	intate dei Bereennung zu t				Angemeniguit	ge Werte	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29,0	kN/mm²		sicherheit	tauglichkeit		Eigengewicht Tragwerk		kN/m²
E-Modul Holz	11,0	kN/mm²	Timco II Werte				Ständige Lasten	6,50	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5.01	kN	Hilfsgrösse k	0.42	0.28		massgebende Sc	hnittkräfte	
Verbundelement Td	2.29		Hilfsgrösse γ	0.71	0.78		Moment Md	92.86	kNm
				-,	-,		Querkraft Vd	33,77	
			Verbundquerschnittswerte				Last auf Verbinder Td	2,29	kN
			Abstand Holz-VerbundsSP	142,62	148,90	mm			
			Abstand Beton-VerbundsSP	107,38	101,10	mm			
			Trägheitsmoment	3,54E+09	3,65E+09	mm ⁴	Querschnitts	Querschnittswerte	
							Fläche Holz	70000	mm²
							Fläche Beton	50000	mm²
	Zwisch	enresu	Itate der Berechnung zu t =	00			mitwirkende Betonbreite	50	cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	9,33E+08	mm ⁴
E-Modul Beton	8,3	kN/mm²		sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm²	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spa		
Timco II Werte			Hilfsgrössen				Raumgewicht Beton	25,0	kN/m³
Verbundelement Trd	5,01	-	Hilfsgrösse k	0,19	0,13		Raumgewicht Holz	-,-	kN/m³
Verbundelement Td	2,11	kN	Hilfsgrösse γ	0,84	0,89		Druckspannung Beton frcd	, , ,	N/mm ²
							Biegespannung Holz fmrd	14,8	N/mm ²
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm ²
			Abstand Holz-VerbundsSP	104,89					
			Abstand Beton-VerbundsSP	145,11	141,75				
			Trägheitsmoment	2,82E+09	2,88E+09	mm ⁴			

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

Geometrie	
Spannweite (Lichtmass)	2,75 m
Breite Holzträger b ,	12,0 cm
Höhe Holzträger h,	10,0 cm
Abstand Holzträger b.	50,0 cm
Höhe Schalung d	0,0 cm
Höhe Betonplatte h _c	10,0 cm


Lasten						
- Lasten ohne Beiwerte eingebe	- Lasten ohne Beiwerte eingeben					
- Das Eigengewicht des Tragwe	- Das Eigengewicht des Tragwerks					
wird automatisch berücksichtigt						
Auflast	2,34	kN/m^2				
Nutzlast	3,20	kN/m^2				
ständiger Anteil NL	30	%				

Baustoffe						
Holz	C24					
Beton Ø 16mm	C20/25					
Timco II V	/erbinder					
Abstand	27,0 mm					

Bemessung und Nachweise nach t = 0								
Spannungen Design		Spannungsnachweise	Ausnützung					
negative Spannungen = L	Druckspannungen	Betondruck fcd	37,3%	O.K.				
Betonspannungen auf Gebrauchsniveau		Holzbiegezug ftd	20,9%	O.K.				
Spannung Beton oben	-4,21 N/mm ²	Schub Holz Taud	98,8%	O.K.				
Spannung Beton unten	3,43 N/mm ²	Timco II - Verbundelement	15,4%	O.K.				
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit						
Spannung Holz oben	0,18 N/mm ²	Durchbiegung elastisch	1,4 r	nm				
Spannung Holz unten	3,08 N/mm ²	Grenzwert	1/300					
Schubspannung Holz	0,99 N/mm ²	Durchbiegung, kurzfristig	15,3%	O.K.				

Bemessung und Nachweise nach t = oo							
Spannungen Design		Spannungsnachweise	Ausnützung				
negative Spannungen = E	ruckspannungen	Betondruck fcd	28,3%	O.K.			
Betonspannungen auf Geb	rauchsniveau	Holzbiegezug ftd	30,6%	O.K.			
Spannung Beton oben	-3,20 N/mm ²	Schub Holz Taud	98,8%	O.K.			
Spannung Beton unten	2,08 N/mm ²	Timco II - Verbundelement	21,9%	O.K.			
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit					
Spannung Holz oben	0,14 N/mm ²	Durchbiegung	2,8 1	mm			
Spannung Holz unten	4,52 N/mm ²	Grenzwert	1/300				
Schubspannung Holz	0,99 N/mm ²	Durchbiegung, langfristig	30,5%	O.K.			

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

 Verteilung der Verbundschrauben

 Anzahl Reihen pro Balken
 3

 Abstand in den äusseren Vierteln
 81 mm

 Abstand in den mittleren Vierteln
 162 mm

 Anzahl Schrauben pro Balken
 72 Stück

 Anzahl Schrauben pro m²
 52,4 Stück

	Zwico	honroc	ultate der Berechnung zu t =	^		_	Allgemeingülti	ao Morto	
	ZWISC	lemes	untate der Berechhung zu t -				Aligemeniguiti	ge werte	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29,0	kN/mm²		sicherheit	tauglichkeit		Eigengewicht Tragwerk	2,62	kN/m²
E-Modul Holz	11.0	kN/mm²	Timco II Werte		Ť		Ständige Lasten	5.92	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	7,52	5,01		massgebende Sc	hnittkräfte	
Verbundelement Td	0,77	kN	Hilfsgrösse γ	0,12	0,17		Moment Md	5,43	kNm
							Querkraft Vd	7,90	kN
			Verbundquerschnittswerte				Last auf Verbinder Td	1,10	kN
			Abstand Holz-VerbundsSP	56,32	64,62	mm			
			Abstand Beton-VerbundsSP	43,68	35,38	mm			
			Trägheitsmoment	1,87E+08	1,97E+08	mm⁴	Querschnitts	Querschnittswerte	
							Fläche Holz	12000	mm²
							Fläche Beton	50000	mm ²
	Zwisch	enresi	ultate der Berechnung zu t =	00			mitwirkende Betonbreite	50	cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	1,00E+07	mm ⁴
E-Modul Beton	8,3	kN/mm ²		sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm ²	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spa		
Timco II Werte			Hilfsgrössen				Raumgewicht Beton		kN/m³
Verbundelement Trd	5,01	kN	Hilfsgrösse k	3,44	2,29		Raumgewicht Holz		kN/m³
Verbundelement Td	1,10	kN	Hilfsgrösse γ	0,23	0,30		Druckspannung Beton frcd		N/mm ²
							Biegespannung Holz fmrd		N/mm²
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm ²
			Abstand Holz-VerbundsSP	53,09	60,40				
			Abstand Beton-VerbundsSP	46,91	39,60				
			Trägheitsmoment	1,24E+08	1,33E+08	mm ⁴			1

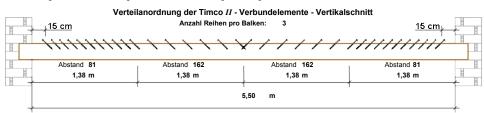
Berechnung #2

gleichbleibende Breite der Holzstabträger

Bemessung Timco® top

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

m
cm
(

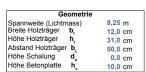

Lasten						
- Lasten ohne Beiwerte eingelt	en					
- Das Eigengewicht des Tragw	- Das Eigengewicht des Tragwerks					
wird automatisch berücksicht	igt					
Auflast	2,34	kN/m^2				
Nutzlast	3,20	kN/m ²				
ständiger Anteil NL	30	%				

Baus	stoffe
Holz	C24
Beton Ø 16mm	C20/25
Timco II V	Verhinder
Abstand	27,0 mm

	Deinessung un	d Nachweise nach t = 0			
Spannungen Design		Spannungsnachweise	Ausnützung		
negative Spannungen = L	Druckspannungen	Betondruck fcd	60,0%	O.K.	
Betonspannungen auf Gebrauchsniveau		Holzbiegezug ftd	51,7%	O.K.	
Spannung Beton oben	-6,78 N/mm ²	Schub Holz Taud	95,5%	O.K.	
Spannung Beton unten	3,03 N/mm ²	Timco II - Verbundelement	36,8%	O.K.	
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit			
Spannung Holz oben	-0,19 N/mm ²	Durchbiegung elastisch	7,2 r	nm	
Spannung Holz unten	7,63 N/mm ²	Grenzwert	1/300		
Schubspannung Holz	0,96 N/mm ²	Durchbiegung, kurzfristig	39,2%	O.K.	

	Bemessung und	Nachweise nach t = oo		
Spannungen Design		Spannungsnachweise	Ausnützung	
negative Spannungen = L	Druckspannungen	Betondruck fcd	42,1%	O.K.
Betonspannungen auf Gebrauchsniveau		Holzbiegezug ftd	59,4%	O.K.
Spannung Beton oben	-4,76 N/mm ²	Schub Holz Taud	95,5%	O.K.
Spannung Beton unten	0,74 N/mm ²	Timco II - Verbundelement	39,4%	O.K.
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben	-0,81 N/mm ²	m ² Durchbiegung		mm
Spannung Holz unten	8,78 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,96 N/mm ²	Durchbiegung, langfristig	66,9%	O.K.

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.


Verteilung der Verbundschrau	ben	
Anzahl Reihen pro Balken	3	
Abstand in den äusseren Vierteln	81	mm
Abstand in den mittleren Vierteln	162	mm
Anzahl Schrauben pro Balken	144	Stück
Anzahl Schrauben pro m²	52,4	Stück

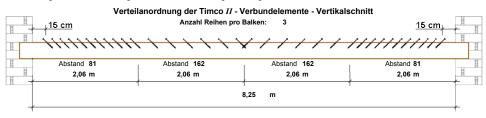
	Zwisc	nenres	ultate der Berechnung zu t =	: 0			Allgemeingülti	ge Werte	
		I		Ī			- Ingeniungeni	J	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29,0	kN/mm	:	sicherheit	tauglichkeit		Eigengewicht Tragwerk	2,75	kN/m²
E-Modul Holz	11,0	kN/mm	Timco II Werte				Ständige Lasten	6,05	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	1,88	1,25		massgebende Sc	hnittkräfte	
Verbundelement Td	1,84	kN	Hilfsgrösse γ	0,35	0,44		Moment Md	22,07	kNm
							Querkraft Vd	16,05	kN
			Verbundquerschnittswerte				Last auf Verbinder Td	1,97	kN
			Abstand Holz-VerbundsSP	99,96	108,33	mm			
			Abstand Beton-VerbundsSP	55,04	46,67	mm			
			Trägheitsmoment	5,93E+08	6,26E+08	mm ⁴	Querschnitts	Querschnittswerte	
							Fläche Holz	25200	mm ²
							Fläche Beton	50000	mm ²
	Zwisch	enresi	ıltate der Berechnung zu t =	00			mitwirkende Betonbreite	mitwirkende Betonbreite 50 cm	
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	9,26E+07	mm ⁴
E-Modul Beton	8,3	kN/mm	:	sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spa	nnungen	
Timco II Werte			Hilfsgrössen				Raumgewicht Beton	25,0	kN/m³
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,86	0,57		Raumgewicht Holz	3,5	kN/m³
Verbundelement Td	1,97	kN	Hilfsgrösse γ	0,54	0,64		Druckspannung Beton frcd		N/mm ²
							Biegespannung Holz fmrd	14,8	N/mm ²
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm ²
			Abstand Holz-VerbundsSP	87,20	93,50	mm			
			Abstand Beton-VerbundsSP	67,80	61,50	mm			
			Trägheitsmoment	4.83E+08	5,08E+08	mm ⁴			

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

0,98 N/mm²

Lasten - Lasten ohne Beiwerte eingeben - Das Eigengewicht des Tragwerks wird automatisch berücksichtigt 2,34 kN/m² 3,20 kN/m² Nutzlast ständiger Anteil NL 30 %

Baustoffe							
Holz		C24					
Beton	Ø 16mm	C20/25					
Timco II Verbinder							
Abstan	d	27,0 mm					


Durchbiegung, kurzfristig

O.K

	Bemessung und	Nachweise nach t = oo			
Spannungen Design		Spannungsnachweise	Ausnützung		
negative Spannungen = I	Druckspannungen	Betondruck fcd	53,3%	O.K	
Betonspannungen auf Gebrauchsniveau		Holzbiegezug ftd	76,0%	O.K.	
Spannung Beton oben	-6,02 N/mm ²	Schub Holz Taud	98,4%	O.K	
Spannung Beton unten	-0,93 N/mm ²	Timco II - Verbundelement	45,5%	O.K	
Holzspannungen auf Gebr	Holzspannungen auf Gebrauchsniveau				
Spannung Holz oben	-1,87 N/mm ²	Durchbiegung	26,1	mm	
Spannung Holz unten	11,22 N/mm ²	Grenzwert	1/300		
Schubspannung Holz	0.98 N/mm ²	Durchbiegung, langfristig	95.1%	O.K.	

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

Schubspannung Holz

Verteilung der Verbundschrauben Anzahl Reihen pro Balken Abstand in den äusseren Vierteln 81 mm Abstand in den mittleren Vierteln **162** mm Anzahl Schrauben pro Balken 222 Stück Anzahl Schrauben pro m² 53,8 Stück

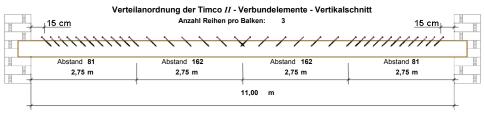
Zwischenresultate der Berechnung zu t = 0							Allgemeingülti	ge Werte	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der		_
E-Modul Beton		kN/mm²		sicherheit	tauglichkeit		Eigengewicht Tragwerk		kN/m
E-Modul Holz		kN/mm²	Timco II Werte				Ständige Lasten		kN/m
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,84	0,56		massgebende Sc	hnittkräfte	
Verbundelement Td	2,30	kN	Hilfsgrösse γ	0,54	0,64		Moment Md	50,35	kNm
							Querkraft Vd	24,41	kN
			Verbundquerschnittswerte				Last auf Verbinder Td	2,30	kN
			Abstand Holz-VerbundsSP	135,05	142,42	mm			
			Abstand Beton-VerbundsSP	69,95	62,58	mm			
			Trägheitsmoment	1,44E+09	1,49E+09	mm ⁴	Querschnitts	werte	
							Fläche Holz	37200	mm ²
							Fläche Beton	50000	mm²
	Zwisch	enresul	ate der Berechnung zu t =	00			mitwirkende Betonbreite 50 cm		cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	2,98E+08	mm ⁴
E-Modul Beton	8,3	kN/mm²		sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm²	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spannungen		
Timco II Werte			Hilfsgrössen				Raumgewicht Beton		kN/m
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,38	0,25		Raumgewicht Holz	3,5	kN/m
Verbundelement Td	2,28	kN	Hilfsgrösse γ	0,72	0,80		Druckspannung Beton frcd	-11,3	N/mn
							Biegespannung Holz fmrd	14,8	N/mn
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mn
			Abstand Holz-VerbundsSP	110,62	115,52	mm			
			Abstand Beton-VerbundsSP	94.38		mm			

nach der Timco® Zulassung Z-9.1-445 und in Anlehnung an EC5 und EC2

-1,35 N/mm² 10,50 N/mm²

Lasten Lasten ohne Beiwerte eingeben Das Eigengewicht des Tragwerks wird automatisch berücksichtigt 2,34 kN/m² 3,20 kN/m² 30 % Auflast Nutzlast ständiger Anteil NL

Holz C24 Beton Ø 16mm C20/25 Timco II Verbinder Abstand



Durchbiegung elastisch Grenzwert

21,3 mm I/300

Schubspannung Holz	0,94 N/mm ²	Durchbiegung, kurzfristig	58,1%	O.K.
	Pomocouna una	Nachweise nach t = oo		
Spannungen Design	beinessung und	Spannungsnachweise	Ausnützung	
negative Spannungen = L	Druckspannungen	Betondruck fcd	57,8%	O.K.
Betonspannungen auf Gel	brauchsniveau	Holzbiegezug ftd	78,2%	O.K.
Spannung Beton oben	-6,53 N/mm ²	Schub Holz Taud	94,1%	O.K.
Spannung Beton unten	-2,56 N/mm ²	Timco II - Verbundelement	44,6%	O.K.
Holzspannungen auf Gebr	auchsniveau	Gebrauchstauglichkeit		
Spannung Holz oben -2,94 N/mm²		Durchbiegung	36,6	mm
Spannung Holz unten	11,55 N/mm ²	Grenzwert	1/300	
Schubspannung Holz	0,94 N/mm ²	Durchbiegung, langfristig	99,9%	O.K.

Die Berechnung wird mit einer Trennlage für kled Mittel und Nutzungsklasse 1 geführt.

Verteilung der Verbundschrauben Anzahl Reihen pro Balken Abstand in den äusseren Vierteln 81 mm Abstand in den mittleren Vierteln **162** mm Anzahl Schrauben pro Balken 294 Stück Anzahl Schrauben pro m²

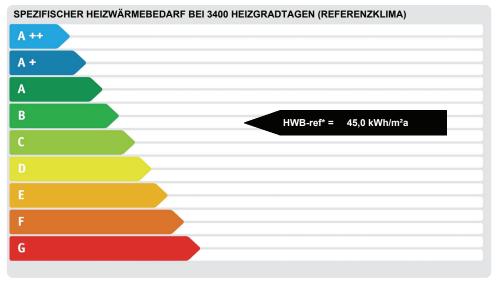
•	7wisc	henresul	tate der Berechnung zu t =	0			Allgemeingülti	ge Werte	
				<u> </u>	I		, angemenngana	90 110.10	
Materialeigenschaften				Trag-	Gebrauchs-		Aufteilung der	Lasten	
E-Modul Beton	29,0	kN/mm²		sicherheit	tauglichkeit		Eigengewicht Tragwerk	3,03	kN/m²
E-Modul Holz	11,0	kN/mm²	Timco II Werte		_		Ständige Lasten	6,33	kN/m²
Wertigkeit Beton (n)	2,6		versch. Modul	8,49	12,74	kN/mm	Kurzfristige Lasten	2,24	kN/m ²
Timco II Werte			Hilfsgrössen						
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,47	0,31		massgebende Sc	hnittkräfte	
Verbundelement Td	2,37	kN	Hilfsgrösse γ	0,68	0,76		Moment Md	91,10	kNm
							Querkraft Vd	33,13	kN
			Verbundquerschnittswerte				Last auf Verbinder Td	2,37	kN
			Abstand Holz-VerbundsSP	169,94	176,93	mm			
			Abstand Beton-VerbundsSP	100,06	93,07	mm			
			Trägheitsmoment	3,38E+09	3,48E+09	mm ⁴	Querschnittswerte		
							Fläche Holz	52800	mm ²
							Fläche Beton	50000	mm²
	Zwisch	enresult	ate der Berechnung zu t =	00			mitwirkende Betonbreite	50	cm
							mitwirkende Betonfläche	50000	mm2
Materialeigenschaften				Trag-	Gebrauchs-		Trägh.moment Holz	8,52E+08	mm⁴
E-Modul Beton	8,3	kN/mm²		sicherheit	tauglichkeit		Trägh.moment Beton	4,17E+07	mm ⁴
E-Modul Holz	6,9	kN/mm²	Timco II Werte						
Wertigkeit Beton (n)	1,2		versch. Modul	5,31	7,96	kN/mm			
							Gewichte & Spannungen		
Timco II Werte			Hilfsgrössen				Raumgewicht Beton	25,0	kN/m³
Verbundelement Trd	5,01	kN	Hilfsgrösse k	0,21	0,14		Raumgewicht Holz	3,5	kN/m³
Verbundelement Td	2,23	kN	Hilfsgrösse γ	0,82	0,87		Druckspannung Beton frcd	-11,3	N/mm
							Biegespannung Holz fmrd	14,8	N/mm
			Verbundquerschnittswerte				Schubspannung Holz fvrd	1,2	N/mm
			Abstand Holz-VerbundsSP	130.78	134.88	mm			
			Abstanti Holz-Verbunusse	130,76	134,00	10000		1	l .

Energie

Energieausweis Typ 2

Energieausweis für Nicht-Wohngebäude - Planung

OIB Österreichisches Institut für Bautechnik


Gebäude KIGA TYP2

Gebäudeart Kindergarten Erbaut im Jahr Gebäudezone Katastralgemeinde Linz KG - Nummer Straße 45203

PLZ/Ort 4010 Linz Einlagezahl

Grundstücksnr.

EigentümerIn

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2002/91/EG über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

EA-01-2007-SW-a EA-NWG 25.04.2007

Energieausweis für Nicht-Wohngebäude - Planung

gemäß ÖNORM H5055

OIB

GEBÄUDEDATEN

Brutto-Grundfläche 324 m² 1.324 m³ konditioniertes Brutto-Volumen charakteristische Länge (Ic) 1,30 m Kompaktheit (A/V) 0,77 1/m mittlerer U-Wert (Um) 0,24 W/m²K LEK - Wert

KLIMADATEN

Klimaregion	N
Seehöhe	266 m
Heizgradtage	3560 Kd
Heiztage	191 d
Norm - Außentemperatur	-12,2 °C
Soll - Innentemperatur	20 °C

	Referenzklima zonenbezogen	spezifisch	Standortklima zonenbezogen	spezifisch	Anforderungen ab 01.01.2010	
HWB*	14.569 kWh/a	11,01 kWh/m³a		·	19,0 kWh/m³a	erfüllt
HWB	15.299 kWh/a	47,22 kWh/m²a	16.892 kWh/a	52,13 kWh/m²a	,.	
wwwB		·	1.525 kWh/a	4,71 kWh/m²a		
NERLT-h						
KB*	2.994 kWh/a	2,26 kWh/m³a			1,0 kWh/m³a	nicht erfüllt
КВ			6.412 kWh/a	19,79 kWh/m²a		
NERLT-k						
NERLT-d						
NE						
HTEB-RH			-159 kWh/a	-0,49 kWh/m²a		
HTEB-WW			1.444 kWh/a	4,46 kWh/m²a		
HTEB			1.860 kWh/a	5,74 kWh/m²a		
KTEB						
HEB			20.276 kWh/a	62,58 kWh/m²a		
KEB						
RLTEB						
BelEB			k.A.* kWh/a	k.A.* kWh/m²a		
EEB			26.689 kWh/a	82,37 kWh/m²a		
PEB						
CO2						

^{*} k.A. = keine Angabe, die Teile für die Berechnung wurden nicht ausgeführt

ERLÄUTERUNGEN

Endenergiebedarf (EEB):

Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen Standardnutzung zugeführt werden muss.

Übungsversion für nichtgewerbliche Zwecke

Datenblatt GEQ

KIGA TYP2

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Linz

HWB 52 fgee -

Gebäudedaten - Neubau - Planung 2

Brutto-Grundfläche BGF 324 m² 1.324 m³ charakteristische Länge I_C Kompaktheit A_B / V_B 1,30 m Konditioniertes Brutto-Volumen 0,77 m⁻¹ Gebäudehüllfläche A_B 1.016 m²

Ermittlung der Eingabedaten

Geometrische Daten:

Bauphysikalische Daten:

Haustechnik Daten:

Ergebnisse am tatsächlichen Standort: Linz

Transmissionswärmeverluste Q _T		24.500	kWh/a
Lüftungswärmeverluste Q _V		10.172	kWh/a
Solare Wärmegewinne passiv η x Q _s		11.805	kWh/a
Innere Wärmegewinne passiv ηxQ_{i}	mittelschwere Bauweise	5.975	kWh/a
Heizwärmebedarf Q _b		16.892	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q _T	22.656	kWh/a
Lüftungswärmeverluste Q _V	9.422	kWh/a
Solare Wärmegewinne passiv ηxQ_s	11.121	kWh/a
Innere Wärmegewinne passiv $\eta x Q_i$	5.658	kWh/a
Heizwärmebedarf Q _h	15.299	kWh/a

Haustechniksystem

Raumheizung: Nah-/Fernwärme (Fernwärme) Warmwasser: Kombiniert mit Raumheizung

Lüftung: Fensterlüftung

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile detailliert nach ON EN ISO 13770 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:
B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON H 5057 / ON H 5058 / ON H 5059 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB Richtlinie 6 / ON EN ISO 13770

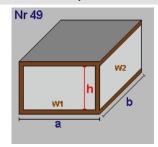
Anmerkung:

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Warmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Bauteil Anforderungen KIGA TYP2

BAUTE	ILE		R-Wert	R-Wert min	U-Wert	U-Wert max	Erfüllt
AW01	Wand gegen Außenluft - HBV Holzfaser				0,19	0,35	Ja
DD01	Decke gegen Außenluft - HBV		6,72	4,00	0,14	0,20	Ja
FD01	Dach HBV				0,07	0,20	Ja
FENST	ER				U-Wert	U-Wert max	Erfüllt
Prüfnor	mmaß Typ 1 (T1) (gegen Außenluft vertikal)				0,60	1,70	Ja
Prüfnor	mmaß Typ 2 (T2) (gegen Außenluft vertikal)				0,59	1,70	Ja
Prüfnor	mmaß Typ 3 (T3) (gegen Außenluft vertikal)				0,63	1,70	Ja
	: R-Wert [m²K/W], U-Wert [W/m²K] Wert max: OIB Richtlinie 6	U-Wert berechnet nach ÖNORM EI	N ISO 6946				

Heizlast


Vereinfachte Berechnung des zeitbezogenen Wärmeverlustes (Heizlast) von Gebäuden gemäß OÖ **Energieausweis**Berechnungsblatt

Norm-Außentemperatur:	-12,2 °C	Standort:	Linz			
Berechnungs-Raumtemperatur:	20 °C	Brutto-Ra	uminhalt der			
Temperatur-Differenz:	32,2 K	beheizten	Gebäudeteil	e:	1.323,67	′ m³
		Gebäudel	nüllfläche:		1.015,69) m²
Bauteile		Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	U [W/m² K]	f [1]	ffh [1]	[W/K]
AW01 Wand gegen Außenluft - H	IBV Holzfaser	206,81	0,190	1,00		39,37
DD01 Decke gegen Außenluft - I	HBV	324,00	0,143	1,00	1,36	62,43
FD01 Dach HBV		324,00	0,073	1,00		23,72
FE/TÜ Fenster u. Türen		160,88	0,586			94,28
Summe OBEN-Bauteile		324,00				
Summe UNTEN-Bauteile		324,00				
Summe Außenwandfläche	n	206,81				
Fensteranteil in Außenwär	nden 43,8 %	160,88				
Summe				[W/	K]	220
Wärmebrücken (vereinfa	acht)			[W/	K]	23
Transmissions - Leitwei	t L _T			[W/	K]	243,69
Lüftungs - Leitwert L _V				[W/	K]	101,29
Gebäude - Heizlast P _{tot}				[k\	W]	11,11
Flächenbez. Heizlast P ₁	bei einer BGF vor	າ 324	m² [W/	m² BG	F]	34,28
Gebäude - Heizlast $\mathbf{P}_{\mathrm{tot}}$ (EN	12831 vereinfacht) L	uftwechsel =	= 2,00 1/h	[k	W]	30,50
man and a second						

Die berechnete Heizlast kann von jener gemäß ÖNORM H 7500 bzw. EN ISO 12831 abweichen und ersetzt nicht den Nachweis der Gebäude-Normhei: gemäß ÖNORM H 7500 bzw. EN ISO 12831. Die vereinfachte Heizlast EN 12831 berücksichtigt nicht die Aufheizleistung und gilt nur für Standardfälle.

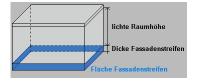
Geometrie

DG Dachkörper

Decke 324,00m² Wand W1 31,79m² AW01 Wand gegen Außenluft - HBV Holzfaser Wand W2 127,15m² AW01 Wand M3 31,79m² AW01 Wand W4 127,15m² AW01 Wand W4 127,15m² AW01 Decke 324,00m² FD01 Dach HBV Boden 324,00m² DD01 Decke gegen Außenluft - HBV

DG Summe

DG Bruttogrundfläche [m²]: 324,00 DG Bruttorauminhalt [m³]: 1.144,37


Deckenvolumen DD01

Fläche $324,00 \text{ m}^2 \times \text{Dicke } 0,55 \text{ m} =$ 179,30 m³

> Bruttorauminhalt [m³]: 179,30

Fassadenstreifen - Automatische Ermittlung

Wand Boden Dicke Länge Fläche AW01 - DD01 0,553m 90,00m 49,81m²

Gesamtsumme Bruttogeschoßfläche [m²]: 324,00 Gesamtsumme Bruttorauminhalt [m³]: 1.272,74

Fenster und Türen

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf [W/K]	g	fs	z	amsc
			Prüf	normmaß Typ 1 (T1)	1,23	1,48	1,82	0,50	0,75	0,030	1,77	0,60		0,50			
			Prüf	normmaß Typ 2 (T2)	1,23	1,48	1,82	0,51	0,51	0,030	1,56	0,59		0,03			
			Prüf	normmaß Typ 3 (T3)	1,23	1,48	1,82	0,51	0,75	0,030	1,56	0,63		0,03			
											4,89						
N																	
T1	DG	AW01	1	8,25 x 3,00	8,25	3,00	24,75	0,50	0,75	0,030	24,11	0,56	13,74	0,50	0,75 (0,15	0,00
T2	DG	AW01	2	5,50 x 2,50	5,50	2,50	27,50	0,51	0,51	0,030	21,31	0,62	17,16	0,03	0,75 (0,24	0,00
			3				52,25				45,42		30,90				
0																	
T1	DG	AW01	1	8,25 x 3,00	8,25	3,00	24,75	0,50	0,75	0,030	24,11	0,56	13,74	0,50	0,75 (0,15	0,39
			1				24,75				24,11		13,74				
S																	
T1	DG	AW01	1	8,25 x 3,00	8,25	3,00	24,75	0,50	0,75	0,030	24,11	0,56	13,74	0,50	0,75 (0,15	0,67
T2	DG	AW01	2	5,50 x 2,50	5,50	2,50	27,50	0,51	0,51	0,030	21,31	0,62	17,16	0,03	0,75 (0,24	0,67
Т3	DG	AW01	1	2,75 x 2,50	2,75	2,50	6,88	0,51	0,75	0,030	5,21	0,69	4,76	0,03	0,75 (0,24	0,67
			4				59,13				50,63		35,66				
W																	
T1	DG	AW01	1	8,25 x 3,00	8,25	3,00	24,75	0,50	0,75	0,030	24,11	0,56	13,74	0,50	0,75 (0,15	0,39
			1				24,75				24,11		13,74				
Summe)		9				160,88				149,16		94,04				

Ug... Uwert Glas Uf... Uwert Rahmen g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor
Typ... Prüfnormmaßtyp
z... Abminderungsfakt. für bewegliche Sonnenschutzeinricht.
Abminderungsfaktor 0,15 ... Außenjalousie
Abminderungsfaktor 0,24 ... Außenjalousie

amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Monatsbilanz HWB

Standort: Linz

31 30 31 365	8,79 3,49 -0,21	2.033 2.897 3.665 24.500	851 1.199 1.534 10.172	2.884 4.095 5.199 34.672	723 700 723 8.515	1.398 724 530 20.577	2.121 1.424 1.254 29.091	0,74 0,35 0,24	0,95 1,00 1,00	872 2.674 3.945 16.892
30	3,49	2.897	1.199	4.095	700	724	1.424	0,35	1,00	2.674
	•									
31	8,79	2.033	851	2.884	723	1.398	2.121	0,74	0,95	872
30	14,04	1.046	433	1.479	700	1.938	2.637	1,78	0,55	23
31	17,62	432	181	613	723	2.452	3.175	5,18	0,19	0
31	18,08	348	145	493	723	2.665	3.389	6,87	0,15	0
30	16,39	634	262	896	700	2.609	3.308	3,69	0,27	0
31	13,28	1.218	510	1.728	723	2.678	3.401	1,97	0,50	17
30	8,59	2.002	828	2.830	700	2.121	2.821	1,00	0,85	420
31	3,80	2.937	1.229	4.166	723	1.681	2.404	0,58	0,98	1.805
28	-0,10	3.292	1.327	4.619	653	1.109	1.763	0,38	1,00	2.860
31	-2,05	3.997	1.673	5.670	723	672	1.395	0,25	1,00	4.276
	°C	kWh	kWh	kWh	kWh	kWh	kWh	70.100		kWh
Tage	Außen-	wärme-	wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Gewinn/	Ausnutz- ungsgrad	Wärme- bedarf
	28 31 30 31 30 31 31 31 31	Außentemperaturen °C 31 -2,05 28 -0,10 31 3,80 30 8,59 31 13,28 30 16,39 31 18,08 31 17,62 30 14,04	Außen-temperaturen verluste kWh 31 -2,05 3.997 28 -0,10 3.292 31 3,80 2.937 30 8,59 2.002 31 13,28 1.218 30 16,39 634 31 18,08 348 31 17,62 432 30 14,04 1.046	Außentemperaturen temperaturen wärmeterluste kWh wärmeterluste kWh 31 -2,05 3,997 1,673 28 -0,10 3,292 1,327 31 3,80 2,937 1,229 30 8,59 2,002 828 31 13,28 1,218 510 30 16,39 634 262 31 18,08 348 145 31 17,62 432 181 30 14,04 1,046 433	Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh verluste kWh <	Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh <td>Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh<td>Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh<td>Außentemperaturen temperaturen wärmetemperaturen verluste kWh wärmetemperaturen verluste kWh verluste kWh k</td><td>Außentemperaturen temperaturen temperaturen wärmeteverluste kWh verluste kWh kWh<!--</td--></td></td></td>	Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh <td>Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh<td>Außentemperaturen temperaturen wärmetemperaturen verluste kWh wärmetemperaturen verluste kWh verluste kWh k</td><td>Außentemperaturen temperaturen temperaturen wärmeteverluste kWh verluste kWh kWh<!--</td--></td></td>	Außentemperaturen temperaturen wärmeverluste kWh wärmeverluste kWh verluste kWh kWh <td>Außentemperaturen temperaturen wärmetemperaturen verluste kWh wärmetemperaturen verluste kWh verluste kWh k</td> <td>Außentemperaturen temperaturen temperaturen wärmeteverluste kWh verluste kWh kWh<!--</td--></td>	Außentemperaturen temperaturen wärmetemperaturen verluste kWh wärmetemperaturen verluste kWh verluste kWh k	Außentemperaturen temperaturen temperaturen wärmeteverluste kWh verluste kWh kWh </td

HWB _{BGF} = 52,13 kWh/m²a HWB _{BRI} = 12,76 kWh/m³a

Ende Heizperiode: 14.04. Beginn Heizperiode: 06.10.

 $BGF [m^2] = 324,00 \qquad L_T [W/K] = 243,26 \qquad Innentemp. [^{\circ}C] = 20 \\ BRI [m^3] = 1.323,67 \qquad L_V [W/K] = 101,29 \qquad qih [W/m^2] = 3,75$

			nut	zbare Gew	inne:	5.658	11.121	16.779			
Gesamt	365		22.656	9.422	32.078	8.515	20.855	29.369			15.299
Dezember	31	0,19	3.585	1.503	5.089	723	606	1.329	0,26	1,00	3.760
November	30	4,16	2.774	1.150	3.924	700	788	1.488	0,38	1,00	2.440
Oktober	31	9,64	1.875	786	2.661	723	1.448	2.171	0,82	0,92	654
September	30	15,03	870	361	1.231	700	1.960	2.660	2,16	0,46	8
August	31	18,56	261	109	370	723	2.417	3.140	8,49	0,12	0
Juli	31	19,12	159	67	226	723	2.680	3.404	15,06	0,07	0
Juni	30	17,33	468	194	661	700	2.566	3.266	4,94	0,20	0
Mai	31	14,20	1.050	440	1.490	723	2.613	3.336	2,24	0,44	8
April	30	9,62	1.818	753	2.571	700	2.082	2.782	1,08	0,82	297
März	31	4,81	2.749	1.153	3.902	723	1.736	2.459	0,63	0,97	1.509
Februar	28	0,73	3.150	1.272	4.422	653	1.201	1.854	0,42	1,00	2.574
Jänner	31	-1,53	3.897	1.634	5.530	723	758	1.481	0,27	1,00	4.050
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf

HWB _{BGF} = 47,22 kWh/m²a HWB _{BRI} = 11,56 kWh/m³a

Kühlbedarf

Standort: Linz

 $BGF [m^2] = 324,00 \qquad L_T [W/K] = 243,69 \qquad Innentemp. [^{\circ}C] = 26 \\ BRI [m^3] = 1.323,67 \qquad \qquad qic [W/m^2] = 7,50 \qquad fcorr = 1,40$

Jänner 31 -2,05 5.085 3.902 8.987 1.446 551 1.997 0,22 1,0 Februar 28 -0,10 4.275 3.158 7.433 1.306 920 2.226 0,30 1,0 März 31 3,80 4.024 3.088 7.113 1.446 1.416 2.862 0,40 0,5 April 30 8,59 3.055 2.317 5.371 1.400 1.826 3.226 0,60 0,5 Mai 31 13,28 2.306 1.770 4.076 1.446 2.359 3.805 0,93 0,8 Juni 30 16,39 1.687 1.279 2.966 1.400 2.338 3.738 1,26 0,7 Juli 31 18,08 1.435 1.101 2.537 1.446 2.379 3.825 1,51 0,6 August 31 17,62 1.520 1.166 2.686 1.446 2.117	mt	365		37.308	28.412	65.720	17.029	17.725	34.754			6.412
temperaturen °C verluste kWh verluste kWh kWh <t< td=""><td>mber</td><td>31</td><td>-0,21</td><td>4.753</td><td>3.647</td><td>8.400</td><td>1.446</td><td>424</td><td>1.871</td><td>0,22</td><td>1,00</td><td>1</td></t<>	mber	31	-0,21	4.753	3.647	8.400	1.446	424	1.871	0,22	1,00	1
Jänner 31 -2,05 5.085 3.902 8.987 1.446 551 1.997 0,22 1,0 Februar 28 -0,10 4.275 3.158 7.433 1.306 920 2.226 0,30 1,0 März 31 3,80 4.024 3.088 7.113 1.446 1.416 2.862 0,40 0,5 April 30 8,59 3.055 2.317 5.371 1.400 1.826 3.226 0,60 0,5 Mai 31 13,28 2.306 1.770 4.076 1.446 2.359 3.805 0,93 0,8 Juni 30 16,39 1.687 1.279 2.966 1.400 2.338 3.738 1,26 0,7 Juli 31 18,08 1.435 1.101 2.537 1.446 2.379 3.825 1,51 0,6 August 31 17,62 1.520 1.166 2.686 1.446 2.117	mber	30	3,49	3.950	2.996	6.945	1.400	590	1.990	0,29	1,00	5
Jänner 31 -2,05 5.085 3.902 8.987 1.446 551 1.997 0,22 1,0 Februar 28 -0,10 4.275 3.158 7.433 1.306 920 2.226 0,30 1,0 März 31 3,80 4.024 3.088 7.113 1.446 1.416 2.862 0,40 0,5 April 30 8,59 3.055 2.317 5.371 1.400 1.826 3.226 0,60 0,5 Mai 31 13,28 2.306 1.770 4.076 1.446 2.359 3.805 0,93 0,8 Juni 30 16,39 1.687 1.279 2.966 1.400 2.338 3.738 1,26 0,7 Juli 31 18,08 1.435 1.101 2.537 1.446 2.379 3.825 1,51 0,6 August 31 17,62 1.520 1.166 2.686 1.446 2.117	oer	31	8,79	3.121	2.395	5.516	1.446	1.162	2.608	0,47	0,99	52
temperaturen °C verluste kWh verluste kWh kWh <t< td=""><td>ember</td><td>30</td><td>14,04</td><td>2.099</td><td>1.592</td><td>3.690</td><td>1.400</td><td>1.642</td><td>3.042</td><td>0,82</td><td>0,90</td><td>432</td></t<>	ember	30	14,04	2.099	1.592	3.690	1.400	1.642	3.042	0,82	0,90	432
temperaturen °C verluste kWh verluste kWh kWh <t< td=""><td>st</td><td>31</td><td>17,62</td><td>1.520</td><td>1.166</td><td>2.686</td><td>1.446</td><td>2.117</td><td>3.563</td><td>1,33</td><td>0,70</td><td>1.520</td></t<>	st	31	17,62	1.520	1.166	2.686	1.446	2.117	3.563	1,33	0,70	1.520
temperaturen °C verluste kWh verluste kWh kWh kWh kWh kWh kWh kWh kWh verluste kWh verluste kWh verluste kWh verluste kWh verluste kWh kWh kWh kWh kWh kWh verluste kWh		31	18,08	1.435	1.101	2.537	1.446	2.379	3.825	1,51	0,63	1.984
temperaturen °C verluste kWh verluste kWh kWh kWh kWh kWh kWh kWh verlust verlust verlust verluste kWh		30	16,39	1.687	1.279	2.966	1.400	2.338	3.738	1,26	0,72	1.456
temperaturen °C verluste kWh verluste kWh kWh kWh kWh kWh kWh kWh verluste kWh verl		31	13,28	2.306	1.770	4.076	1.446	2.359	3.805	0,93	0,86	767
temperaturen °C verluste kWh verluste kWh kWh <t< td=""><td></td><td>30</td><td>8,59</td><td>3.055</td><td>2.317</td><td>5.371</td><td>1.400</td><td>1.826</td><td>3.226</td><td>0,60</td><td>0,96</td><td>159</td></t<>		30	8,59	3.055	2.317	5.371	1.400	1.826	3.226	0,60	0,96	159
temperaturen verluste		31	3,80	4.024	3.088	7.113	1.446	1.416	2.862	0,40	0,99	29
temperaturen verluste verluste Verlust °C kWh kWh kWh kWh kWh	ıar	28	-0,10	4.275	3.158	7.433	1.306	920	2.226	0,30	1,00	6
temperaturen verluste verluste Verlust	er	31	-2,05	5.085	3.902	8.987	1.446	551	1.997	0,22	1,00	1
				10110010		kWh	kWh	kWh	kWh	venusi		kWh
Monate Tage Mittlere Transmissions- Lüftungs- Wärme- Innere Solare Gesamt- Verhältnis Ausnu Außen- wärme- wärme- verluste Gewinne Gewi	ite	Tage	Außen-	wärme-	wärme-					Gewinn/	Ausnutz- ungsgrad	Kühl- bedarf

KB = 19,79 kWh/m²a KB = 19.791 Wh/m²a

Standort: Referenzklima

 $BGF \ [m^2] = 324,00 \qquad L_T \ [W/K] = 243,26 \qquad Innentemp. [^{\circ}C] = 26 \\ BRI \ [m^3] = 1.323,67 \qquad qic \ [W/m^2] = 7,50 \qquad fcorr = 1,35$

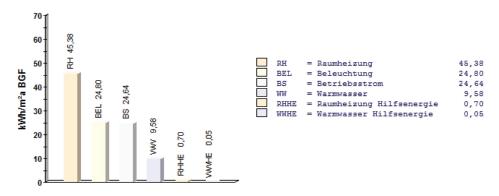
Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne		Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Kühl- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh	Vondot		kWh
Jänner	31	-1,53	4.983	704	5.686	0	622	622	0,11	1,00	0
Februar	28	0,73	4.131	584	4.715	0	995	995	0,21	1,00	0
März	31	4,81	3.835	542	4.377	0	1.461	1.461	0,33	1,00	0
April	30	9,62	2.869	405	3.274	0	1.793	1.793	0,55	0,99	0
Mai	31	14,20	2.136	302	2.437	0	2.302	2.302	0,94	0,90	0
Juni	30	17,33	1.519	215	1.733	0	2.300	2.300	1,33	0,72	853
Juli	31	19,12	1.245	176	1.421	0	2.392	2.392	1,68	0,59	1.328
August	31	18,56	1.347	190	1.537	0	2.087	2.087	1,36	0,71	812
September	30	15,03	1.921	271	2.193	0	1.661	1.661	0,76	0,96	0
Oktober	31	9,64	2.961	418	3.379	0	1.203	1.203	0,36	1,00	0
November	30	4,16	3.825	540	4.366	0	642	642	0,15	1,00	0
Dezember	31	0,19	4.671	660	5.331	0	485	485	0,09	1,00	0
Gesamt	365		35.442	5.008	40.449	0	17.942	17.942			2.994

KB* = 2,26 kWh/m³a KB* = 2.262 Wh/m³a

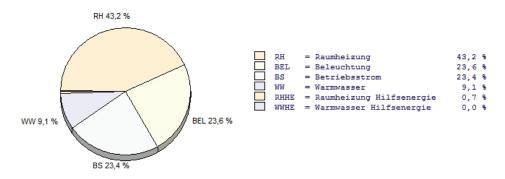
Energie Analyse

Fernwärme

17.808 kWh

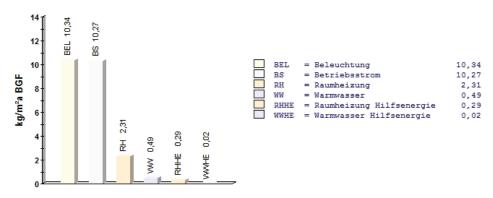

Raumheizung, Warmwasser

Elektrische Energie 16.260 kWh Raumheizung Hilfsenergie, Warmwasser Hilfsenergie, Betriebsstrom, Beleuchtung

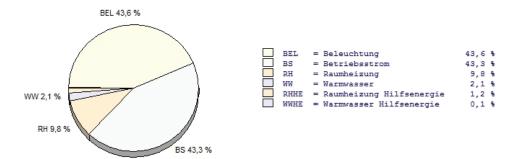

Gesamt

34.068 kWh

Energiebedarf in kWh/m²a BGF



Energiebedarf in %



Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

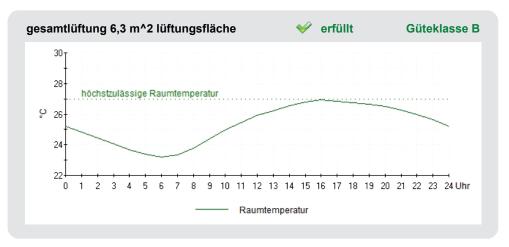
CO2 Emission in kg/m²a BGF

CO2 Emission in %

Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Primärenergienbedarf, CO2-Emission

	Energiebedarf	PEB Faktor	CO2 Faktor [kg/kWh]
	[kWh]	PEB [kWh/m²]	CO2-Emission [kg/m²]
Raumheizung	45,38	1,600	0,051
Fernwärme		72,61	2,31
Raumheizung Hilfsenergie	0,70	2,620	0,417
Elektrische Energie		1,83	0,29
Warmwasser	9,58	1,600	0,051
Fernwärme		15,33	0,49
Warmwasser Hilfsenergie	0,05	2,620	0,417
Elektrische Energie		0,13	0,02
Betriebsstrom	24,64	2,620	0,417
Elektrische Energie		64,55	10,27
Beleuchtung	24,80	2,620	0,417
Elektrische Energie		64,98	10,34
	105,15	219,43	23,73


Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Sommertauglichkeit Typ 2

Vermeidung sommerlicher Überwärmung Nachweis gemäß ÖNORM B 8110-3 Ausgabe 2012-03-15

KIGA TYP2

4010 Linz

 $\label{eq:Guteklassen: A+ = sehr gut sommertauglich, A = gut sommertauglich, B = sommertauglich, C = nicht sommertauglich, D = nicht sommertauglic$

GEBÄUDEDATEN

Katastralgemeinde Linz

Einlagezahl

Grundstücksnummer

2014 Baujahr

Nutzungsprofil Kindergarten Planungsstand Neubauplanung

KLIMADATEN

Normsommer-22,5 °C Tagesmittel außentemperatur 15,2 °C min. Nacht

29,1 °C max. Tag

266m Seehöhe

Raum	Fläche m²	höchste Raumtemp. °C	max.	niedrigste Raumtemp. °C	max.	Anforderung
gesamtlüftung 6,3 m^2 lüftungsflå	262,00	27,0	27,0	23,2	-	erfüllt

Voraussetzungen: Einhaltung der Sicherheitserfordernisse gegen Sturm, Schlagregen, Einbruch u. dgl.

Einhaltung der Anforderungen an den Schallschutz It. ÖNORM B 8115-2

Es sind keine wie immer gearteten Strömungsbehinderungen wie beispielsweise Insektenschutzgitter oder Vorhänge vorhanden.

Vermeidung sommerlicher Überwärmung

Raum gesamtlüftung 6,3 m^2 lüftungsfläche

Nutzfläche 262,00 m² 247,50 m³ Nettovolumen

Fensterlüftung

Nutzungsart innere Lasten: Kindergarten

✓ Einrichtung berücksichtigt: Standardwert 38 kg/m²

✓ technische Wärmequellen berücksichtigt

✓ Personenwärme berücksichtigt Anzahl Personen 44

Bauteile	ē	Aus- richtung	Fläche m²	Neigung	Absorptions- grad	flächenbez. speicherwirk. Masse kg/m²
DD01	Decke gegen Außenluft - HBV		262,00			35,67
AW01	Wand gegen Außenluft - HBV Holzfaser	N	55,00	90°	0,50	226,27
AW01	Wand gegen Außenluft - HBV Holzfaser	S	48,13	90°	0,50	226,27
AW01	Wand gegen Außenluft - HBV Holzfaser	W	0,00	90°	0,50	226,27
AW01	Wand gegen Außenluft - HBV Holzfaser	0	0,00	90°	0,50	226,27
ZW01	WAND INNEN HBV (55dB)		33,54			226,32
ZW03	WAND INNEN (55dB)		87,66			41,68
FD01	Dach HBV		262,00		0,50	226,55
Einrich	tung		262,00			38,00

Fenster		Anzahl	Aus- richtung	Fläche m²	Neigung	Anzahl Scheiben	Ug	g- Wert	Uw
5,50 x 2,50	zu	2	N	27,50	90°	1	0,60	0,03	0,69
8,25 x 3,00	zu	1	N	24,75	90°	1	0,50	0,50	0,56
8,25 x 3,00	zu	1	0	24,75	90°	1	0,50	0,50	0,56
2 x 2,1		2	Innen	8,40		1	0,50	0,50	0,55
5,50 x 2,50	zu	2	S	27,50	90°	1	0,60	0,03	0,69
2,75 x 2,50	zu	1	S	6,88	90°	1	0,51	0,03	0,69
8,25 x 3,00	zu	1	S	24,75	90°	1	0,50	0,50	0,56
2,10 x 3,00	offen	1	W	6,30	90°	1	0,50	0,50	0,55
6,15 x 3,00	zu	1	W	18,45	90°	1	0,50	0,50	0,54
Tür 0,9 x 2,1		4	Innen	7,56					0,55
Tür 0,9 x 2,1		6	Innen	11,34					0,55

Solange die Außentemperatur geringer als die Innentemperatur ist, sind folgenden Fenster geöffnet zu halten: $2 \times 2,1$; $2,10 \times 3,00$;

Verschattung	Ausricht.	Sonnenschutz	von - bis	τ_{eB}	ρ_{eB}	F _{SC}
5,50 x 2,50	N	kein Sonnenschutz				1,000
8,25 x 3,00	N	Außenjalousie, weiß	5:00 - 20:00	0,01	0,87	0,964
5,50 x 2,50	S	kein Sonnenschutz				1,000
2,75 x 2,50	S	kein Sonnenschutz				1,000
8,25 x 3,00	S	Außenjalousie, weiß	5:00 - 20:00	0,01	0,87	0,964
2,10 x 3,00	W	Außenjalousie, weiß	9:00 - 20:00	0,01	0,87	0,982
6,15 x 3,00	W	Außenjalousie, weiß	5:00 - 20:00	0,01	0,87	0,982
8,25 x 3,00	0	Außenjalousie, weiß	5:00 - 20:00	0,01	0,87	0,982

Neigung: 0° = Waagrecht, 90° = Lotrecht Fenster: zu = geschlossen, kipp. = gekippt, offen = geöffnet; Ug = U-Wert Glas; Uw = U-Wert Fenster τ_{eB} solarer Transmissionsgrad ρ_{eB} solarer Reflexionsgrad Verschattungsfaktor für Umgebung, auskragende Bauteile, Fensterlaibung It. ÖNORM B 8110-6

Speicherwirksame Masse

AW01 Wand gegen Außenluft - HBV Holzfaser	von Innen nach Außen	Dicke λ m W/mk	Dichte spez. V kg/m³ J/kgK	
Manager	7011 11111011 114011 7 1410011		•	
Normalbeton	24.0 %	0,1000 1,710	2.300 1.116 500 2.340	
Riegel dazw.	,	0,120		
Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)	76,0 %	0,3200 0,048	160 2.340	
Luft steh., W-Fluss n. oben 36 < d < = 40 mm	# *	0,0400 0,250	1 1.003	
Polycarbonatstegplatte 30 mm	# *	0,0300 0,030	113 100	J
U-Wert 0,19 W/m²K	Speicherwirk	same Masse [kg/m²]	m _{w,B,A} 226,2	27
DD01 Decke gegen Außenluft - HBV		Dicke λ	Dichte spez. V	\/L
DD01 Decke gegen Ausemun - 11DV	von Innen nach Außen	Dicke λ m W/mk	•	
			0 0	
Holz - Furniersperrholz	#	0,0240 0,440	650 2.340	
Holz - Schnittholz Nadel, rauh, techn. getr. dazw.	25,7 %	0,0850 0,120	500 2.340)
ROCKWOOL Sonorock	74,3 %	0,040	27 900)
Dampfbremse Polyethylen (PE)		0,0002 0,500	980 1.260)
Normalbeton		0,1000 1,710	2.300 1.116	ĵ
Holz - Schnittholz Nadel, gehobelt, techn. getr. dazw.	24,0 %	0,3200 0,120	500 2.340)
Holzfaser-Dämmplatte (160 < roh < = 200kg/m³)	76,0 %	0,050	200 2.340)
Holz - Schnittholz Nadel, gehobelt, techn. getr.		0,0240 0,120	500 2.340)
Dichtungsbahn Polyethylen (PE)	#	0,0002 0,500	980 1.260)
U-Wert 0,14 W/m²K		same Masse [kg/m²]		
U-Weit 0,14 W/IIIFK	Speicherwirks	same wasse [kg/m-]	m _{w,B,A} 35,6	1
FD01 Dach HBV		Dicke λ	Dichte spez. V	Vk
1501 Buon 1150	von Außen nach Innen	m W/mk	kg/m³ J/kgk	
\#; BE0			0 0	
Vlies PES	#	0,0100 0,500	600 792	
Bauder Elastomerbitumen-Wurzelschutzbahnen	#	0,0100 0,170	1.000 1.700	
Polymerbitumen-Dichtungsbahn	#	0,0100 0,230	1.100 1.260	
Dichtungsbahn Polyethylen (PE)	#	0,0018 0,500	980 1.260	
AUSTROTHERM XPS TOP 70		0,0200 0,038	39 1.500	
AUSTROTHERM EPS W30 PLUS		0,2800 0,030	30 1.500)
ISOVER VARIO KM	#	0,0020 0,200	0 ()
Normalbeton		0,1000 1,710	2.300 1.116	3
Holz - Schnittholz Nadel, gehobelt, techn. getr. dazw.	# * 24,0 %	0,3200 0,120	500 2.340	0
Luft steh., W-Fluss n. oben d > 200 mm	# * 76,0 %	1,560	1 1.003	3
U-Wert 0,10 W/m²K	Speicherwirk	same Masse [kg/m²]	m _{w,B,A} 226,5	55
			W,D,A	
ZW03 WAND INNEN (55dB)		Dicke λ	Dichte spez. V	۷k.
, ,	von Innen nach Außen	m W/mk	kg/m³ J/kgk	
CLT - cross laminated timber		0,0570 0,120	450 2.340	
Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)		0,0750 0,120	160 2.340	
Gipskartonplatte			850 1.044	
•		, ,		
Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)		0,0750 0,048	160 2.340	
CLT - cross laminated timber		0,0880 0,120	450 2.340	
U-Wert 0,21 W/m²K	Speicherwirk	same Masse [kg/m²]	m _{w,B,A} 41,6	8
ZW01 WAND INNEN HBV (55dB)		Dioko ^	Diobto spor V	1/1-
ZW01 WAND INNEN HBV (55dB)	von Innen nach Außen	Dicke λ m W/mk	Dichte spez. V kg/m³ J/kgk	
Normalhatan		***		
Normalbeton	40.0.00	0,1000 1,710		
Holz - Schnittholz Nadel, rauh, techn. getr. dazw.	10,0 %	0,3200 0,120	500 2.340	
Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)	90,0 %	0,048	160 2.340	
Holz - Schnittholz Nadel, gehobelt, techn. getr.		0,0190 0,120	500 2.340	J
U-Wert 0,16 W/m²K	Speicherwirk	same Masse [kg/m²]	m _{w,B,A} 226,3	12

Vergleich HBV - BSP

Brettsperrholz* (v)

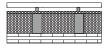
Holzständer*

	[cm]	[kg/m	n ²]	[cm][[kg/m²]
Brettsperrholz 3-lagig	10,0	45,0	Gipskartonplatte	1,5	12,7
Holzsteher b, 10 cm dazw Holzfaserdämmplatte	21,0	23,2 30	Gispkartonplatte	1,5	12,7
Holzfaserdämmplatte	2,5	4,1	Holzlattung dazw. Holzfaser-Dämmplatte	4,0	1,0 6,3
Holzlattung hinterlüftet	4,0	1,0	Dampfbremse Polyethylen	-	-
Polycarbonatstegplatte	3,0	3,4	O\$B-Platte	1,8	11,0
			Holzsteher b, 8 cm dazw. Holzfaserdämmplatte	22,5	27,0 27,3
			O\$B-Platte	1,8	11,0
			Holzlattung hinterlüftet	4,0	1,0
			Polycarbonatstegplatte	3,0	3,4
Σ	40,5	97,0	Σ	40,1	107,2
	[V	V/m²K]		[V	V/m²K]
U-Wert		0,190	U-Wert		0,190

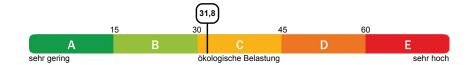
^{*}Beispielaufbau ohne statische Vordimensionierung v) diese Aufbauten werden im nachfolgenden Vergleich weiterverfolgt

Vergleich Wandaufbau

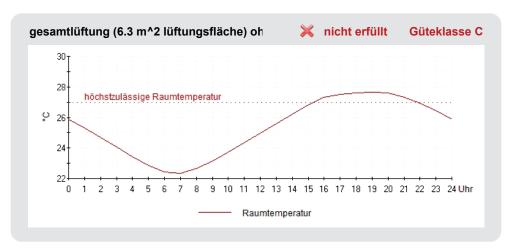
Holzbetonverbund #1 (v)


Holzbetonverbund #2

	[cm]	[kg/m²]		[cm]	[kg/m²]
Normalbeton	10,0	230,0	Normalbeton	10,0	230,0
Holzsteher b, 12 cm dazw. Holzfaserdämmplatte	32,0	38,4 38,9	Holzfaserdämmplatte	0,5	0,8
Luftschicht	4,0	-	Holzsteher b, 12 cm dazw. Holzfaserdämmplatte	31,5	37,8 38,3
Polycarbonatstegplatte	3,0	3,4	Luftschicht	4	-
			Polycarbonatstegplatte	3,0	3,4
Σ	49,0	309,2	Σ	48,0	308,0
		$[W/m^2K]$			$[W/m^2K]$
U-Wert		0,19	U-Wert		0,188

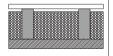

Übersicht **Vergleich**

	WANDFERTIGTEIL HBV	WANDFERTIGTEIL ALTERNATIVAUFBAU HOLZBAU
ROHBAU	Holz-Beton-Verbund = Tragstruktur Rohbau=Ausbau=Heizkörper (Betonaktivierung) (Sichtqualität)	Brett-Sperr-Holz + Steher = Tragkonstruktion Rohbau=Ausbau (Wohnsichtqualität)
Dampfbremse -sperre	Beton fungiert als Dampfsperre/-bremse, Fugen werden bauseits aussenseitig abgeklebt	KLH mit entsprechendem Leimanteil fungiert als Dampfbremse, Fugen werden bauseits aussenseitig abgeklebt
Elektro	Integrierte Leitungsführung Elektro möglich, im konkreten Falle ist diese eigens in einem Bodenkanal untergebracht.	Integrierte Leitungsführung Elektro möglich, Funktion als Dampfsperre/-bremse muß in diesem Fall überpüft
Aktivierung	Integrierte Leitungsführung zur Aktivierung der Betonplatte (heizen, kühlen)	
INNENAUSBAU	Aufgrund der fertigen Oberflächen (Sichtbeton) und der Ausführung der Deckenelemente mit Bodenkanälen als Verbindungsglied ist der Innenausbau im wesentlichen mit dem Rohbau abgeschlossen.	Aufgrund der fertigen Oberflächen (Sichtqualität) und der Ausführung der Deckenelemente mit Bodenkanälen als Verbindungsglied ist der Innenausbau im wesentlichen mit dem Rohbau abgeschlossen.
	Gestalterisch problematisch sind die Oberflächen für das Material Holz, da exakt dieselbe Oberflächenqualität für folgende Oberflächen, welche sich aus den minimierten Aufbauten ergeben, erwünscht wären: Konstruktionsvollholz HBV-träger Sperrholz- bzw. Brettsperrholzwandelemente Bodenbelag Tischlerelemente	Hinsichtlich der Oberflächen Holz ergibt sich im wesentlichen dieselbe Problematik wie beim Aufbau HBV.
FASSADE. DÄMMUNG	Aufgrund der finalen Innenseite (Sichtqualität) ist es notwendig, die Bauteilfugen der Elemente von Aussen dampfdicht zu schliessen. Die Dämmung wird als Plattenwerkstoff eingebracht. Die Fassade an den tragenden Holzstehern montiert.	Aufgrund der finalen Innenseite (Sichtqualität) ist es notwendig, die Bauteilfugen der Elemente von Aussen dampfdicht zu schliessen. Die Dämmung wird als Plattenwerkstoff eingebracht. Die Fassade an den tragenden Holzstehern montiert.
SCHALLSCHUTZ	In Kombination mit der translucenten Hülle aus Polycarbo von besonderer Bedeutung (siehe Grundlagen OIB): siehe	
	Aufgrund es guten Schallschutzwertes der Betonplatten (51dB) kann der erforderliche Schallschutz der gesamten Aussenwand R'res,w erreicht werden.	Aufgrund mangelnder Masse war es nicht möglich, den Vergleichwaufbau mit der verwendeten Software zu rechnen. Ein Vergleichwaufbau mit erhöhter Masse wurde erstellt.
SOMMERTAUGLICHKEIT	siehe Berechnung Mittels der vorgesehenen Lüftungselemente wird über Nachtlüftung die Norm erfüllt.	siehe Berechnung
ÖKOLOGISCHE QUALITÄT	siehe Berechnung	siehe Berechnung
WÄRMESCHUTZ	Beide Aufbauten sind so angelegt, daß Sie in etwa denselb	pen Wärmeschutz erzielen (U-Wert < 0.20 W/m²K)
HEIZEN/KÜHLEN	Annahme: keine kontrollierte Raumlüftung. Aktivierte Betonplatte siehe Berechnung	Annahme: keine kontrollierte Raumlüftung. Heiz- bzw. Kühlsystem ist zusätzlich vorzusehen. siehe Berechnung


Brettsperrholz

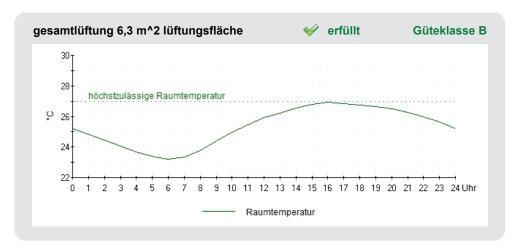
Bautei	le		Fläche A	PEI	GWP	AP	∇OI3
			[m²]	[MJ]	[kg CO2]	[kg SO2]	
AW01 DD01 FD01 FE/TÜ	Brettsperrholz FB Brettsperrholz Dach Brettsperrholz Fenster und Türen	Summe	203,5 324,0 324,0 160,9	177.402,7 389.910,6 469.439,1 124.488,5 1.161.241	-21.666,0 -46.626,3 -6.145,5 7.747,3 -66.691	52,8 118,8 93,2 49,0 314	45,9 65,0 83,5 74,4
-		PEI (Primärenergie Ökoindikator PEI	inhalt nicl	nt erneuerbar) [MJ/m²	•	1.147,06 64,71
		GWP (Global Warn Ökoindikator GWP	•	itial)	[kg CO2/m ² OI GWP F	-	-65,87 0,00
		AP (Versäuerung) Ökoindikator AP			[kg SO2/m² OI AP F	-	0,31 39,97
		Ol3-lc (Ökoindikate Ol3-lc = (PEI + GW	,	2+10)			31,76

Sommertauglichkeit



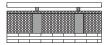
Güteklassen: A+ = sehr gut sommertauglich, A = gut sommertauglich, B = sommertauglich, C = nicht sommertauglich, D = nicht sommertauglich

Raum	Fläche m²	höchste Raumtemp. °C	max.	niedrigste Raumtemp. °C	max. °C	Anforderung
gesamtlüftung (6.3 m^2 lüftungsfl	262,00	27,7	27,0	22,5	-	nicht erfüllt

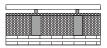

OI3 Klassifizierung

Holzbetonverbund #1

Bautei	le		Fläche	PEI	GWP	AP	∆ Ol3
			A [m²]	[MJ]	[kg CO2]	[kg SO2]	
AW01	Wand gegen Außenluft - HBV Holzfas	ser	198,0	160.970,2	-14.408,9	47,0	46,6
DD01	Decke gegen Außenluft - HBV		324,0	365.836,6	-35.991,0	111,7	65,1
FD01	Dach HBV		324,0	340.215,6	19.497,3	58,0	68,9
FE/TÜ	Fenster und Türen		160,9	124.488,5	7.747,3	49,0	74,4
		Summe		991.511	-23.155	266	
-							
		PEI (Primärenergie Ökoindikator PEI	inhalt nich	nt erneuerbar)	(MJ/m² OI PEI P	•	984,75 48,47
		`		,	•	unkte	
		Ökoindikator PEI	ning Poten	,	OI PEI P	unkte KOF]	48,47
		Ökoindikator PEI GWP (Global Warn	ning Poten	,	OI PEI P	Punkte KOF] Punkte	48,47 -23,00
		Ökoindikator PEI GWP (Global Warn Ökoindikator GWP	ning Poten	,	OI PEI F [kg CO2/m² OI GWP F	Punkte KOF] Punkte KOF]	48,47 -23,00 13,50
		Ökoindikator PEI GWP (Global Warn Ökoindikator GWP AP (Versäuerung)	ning Poten	,	OI PEI F [kg CO2/m² OI GWP F [kg SO2/m²	Punkte KOF] Punkte KOF]	48,47 -23,00 13,50 0,26



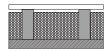
Güteklassen: A+ = sehr gut sommertauglich, A = gut sommertauglich, B = sommertauglich, C = nicht sommertauglich, D = nicht sommertauglich


Raum	Fläche m²	höchste Raumtemp. °C	max.	niedrigste Raumtemp. °C	max.	Anforderung
gesamtlüftung 6,3 m^2 lüftungsflå	262,00	27,0	27,0	23,2	-	erfüllt

Brettsperrholz

Mit der verwendeten Software nicht berechenbar (Masse-Feder-System nicht anwendbar) ->deshalb "Brettsperrholz Ersatzaufbau"

Brettsperrholz Ersatzaufbau



Koı	nstruktionsaufbau und Berechnung					
	Baustoffschichten	Тур	d	ρ	ρ * d	s'
	von innen nach außen		Dicke	Dichte	Flächengew.	dyn. Steifigkeit
Nr	Bezeichnung		[m]	[kg/m³]	[kg/m²]	[MN/m³]
1	CLT - cross laminated timber	VSI	0,100	450	45,00	
2	Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)	DSN	0,245	160	39,20	50,00
3	Gipskartonplatte	М	0,025	850	21,25	
4	Luft steh., W-Fluss n. oben 36 < d < = 40 mm	L	0,040	1	0,04	
5	Polycarbonatstegplatte 30 mm	VSA	0,030	113	3,39	
Dic	ke des Bauteils [m]		0,440			
Flä	chenbezogene Masse des Bauteils				108,88	[kg/m²]
Flä	chenbezogene Masse der innenliegenden Vorsatzsc	chale			45,00	[kg/m²]
Flä	chenbezogene Masse der außenliegenden Vorsatzs	chale			3,39	[kg/m²]
Re	sonanzfrequenz fo, innen				18,1	[Hz]
Resonanzfrequenz fo, außen						[Hz]
Bewertetes Schalldämm-Maß der Masseschicht R _w = 32,4 * log(m') - 26						[dB]
Bewertetes Luftschallverbesserungsmaß ΔR_W						[dB]
Ge	samtes bewertetes Schalldämm-Maß R _{w,ges} = R	w +∆Rw			48	[dB]

Legende:
Rw erforderlich...mindesterforderliche Schalldämmung aufgrund des maßgeblichen Außenlärmpegels
VSI...Vorsatzkonstruktion innen DSN...Dämmschicht nicht unmittelbar auf der Masseschicht M...Masseschicht VSA...Vorsatzkonstruktion außen

Schall

Holzbetonverbund

Kor	nstruktionsaufbau und Berechnung					
	Baustoffschichten	Тур	d	ρ	ρ * d	s'
	von innen nach außen		Dicke	Dichte	Flächengew.	dyn. Steifigkeit
Nr	Bezeichnung		[m]	[kg/m³]	[kg/m²]	[MN/m³]
1	Normalbeton	М	0,100	2300	230,00	
2	Holzfaser-Dämmplatte (100 < roh < = 160 kg/m³)	DSN	0,320	160	51,20	50,00
3	Luft steh., W-Fluss n. oben 36 < d < = 40 mm	L	0,040	1	0,04	
4	Polycarbonatstegplatte 30 mm	VSA	0,030	113	3,39	
Dic	ke des Bauteils [m]		0,490			
Flä	chenbezogene Masse des Bauteils				284,63	[kg/m²]
Flä	chenbezogene Masse der innenliegenden Vorsatzsc	chale				[kg/m²]
Flä	chenbezogene Masse der außenliegenden Vorsatzs	chale			3,39	[kg/m²]
Re	sonanzfrequenz fo, innen					[Hz]
Resonanzfrequenz fo, außen						[Hz]
Bewertetes Schalldämm-Maß der Masseschicht R w = 32,4 * log(m') - 26						[dB]
Be	vertetes Luftschallverbesserungsmaß $\Delta { m extbf{R}}_{ m W}$				9,7	[dB]
Ge	samtes bewertetes Schalldämm-Maß R _{w,ges} = R	w +∆Rw			60	[dB]

Bauteiltyp:

Außenwand hinterlüftet

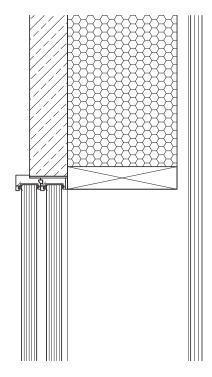
bewertetes Schalldämm-Maß berechnet nach ÖNORM B 8115-4:2003 erforderlich 43 [dB]

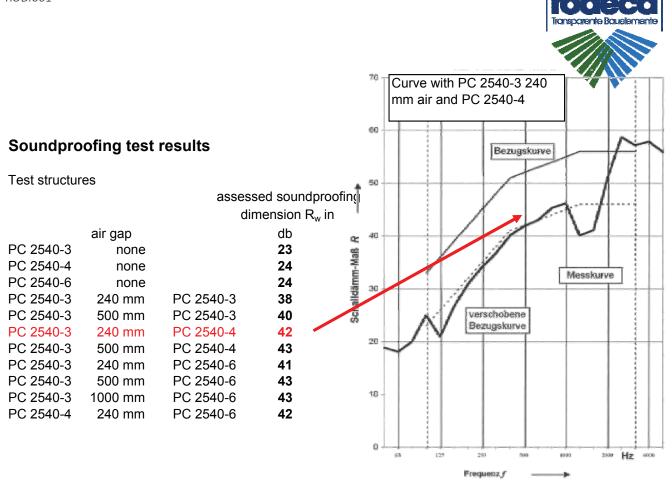
Schall

vorgeschlagener Aufbau:

05.0 POLYCARBONATPLATTE

Luftzwischenraum lt. Schallschutzprüfung

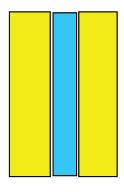

05.0 POLYCARBONATPLATTE


14/32 HOLZSTEHER
04.0 HINTERLÜFTUNG

03.0 POLYCARBONATPLATTE WITTERUNGSSCHUTZ

(A) 49.0

Die nebenstehende Prüfung bezieht sich auf eine 40mm starke Stegplatte - die Verwendung einer 50mm starken Stegplatte verbessert laut telefonischer Auskunft ThyssenKrupp Plastics Austria GmbH, Alu & Kunststoffe, Ing. Andreas Oberleitner, Spartenleiter Hochbau - Vertrieb Rodeca Österreich, den erzielten Wert. Für den Gesamtaufbau ist eine geeignete Prüfung vorzusehen.



The measurement results constitute a test facility value. For use in planning activities, please comply with an indicative dimension of 2 dB for windows and walls in accordance with DIN 4109 "Sound insulation in buildings".

U-values in W/m²K for double-shell wall structures

(calculated)			for an ai	ir gap of
			10-20 mm	20-50mm
PC 2540-3	air	PC 2540-3	0,84	0,82
PC 2540-4	air	PC 2540-4	0,74	0,72
PC 2540-6	air	PC 2540-6	0,58	0,57
PC 2540-3	air	PC 2540-4	0,79	0,77
PC 2540-3	air	PC 2540-6	0,69	0,68
PC 2540-4	air	PC 2540-6	0,65	0,64
PC 2540-3	air	PC 2530-4	0,91	0,88
PC 2540-4	air	PC 2530-4	0,84	0,82
PC 2540-6	air	PC 2530-4	0,73	0,72
PC 2530-4	air	PC 2530-4	0,98	0,95

Kosten

KUMPF.001

Kostenschätzung Holzbauarbeiten

Bauvorhaben: KIGA Linz Type 2

Ing. Georg Kumpfmüller Bauges.m.b.H. & Co KG Ausschreiber:

Pfarrkirchen 34

4141 Pfarrkirchen im Mühlkreis

Angebotssumme inkl. UST	EUR	477.545,40	
20,00 % Mehrwertsteuer	EUR	79.590,90	
Angebotssumme netto	EUR	397.954,50	

Leistungsverzeichnis / EUR

KIGA Linz Type 2

Positionsnummer	ZA Positionstext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36	Holzbauarbeite	n			Z	
36 01	Baustellegemein	kosten			Z	
36 01 01	Baustelleneinrichtun	g			Z	
		Lohn	:	0,00		
		Sonstiges	:	15.000,00		
	1,00 Pa	Einheitspreis	:	15.000,00 EUR		15.000,00
36 01 02	Transport + Kran				Z	
	,	Lohn	:	0,00		
		Sonstiges	:	22.000,00		
	1,00 Pa	Einheitspreis	:	22.000,00 EUR		22.000,00
36 01 03	Baustelle räumen				Z	
		Lohn	:	0,00		
		Sonstiges	:	6.000,00		
	1,00 Pa	Einheitspreis	:	6.000,00 EUR		6.000,00
36 01 04	Gerüste Fassade				Z	
		Lohn	:	0,00	_	
		Sonstiges	:	5,00		
	230,00 m ²	Einheitspreis	:	5,00 EUR		1.150,00
36 01	Baustellegemeinkos	ten				44.150,00
36 02	Wandkonstruktio	on			Z	
36 02 01	AW 01				Z	
		Lohn	:	78,20		
		Sonstiges	:	208,85		
	125,00 m ²	Einheitspreis	:	287,05 EUR		35.881,25
36 02 02	AW 02				Z	
		Lohn	:	82,40		
		Sonstiges	:	297,15		
	105,00 m ²	Einheitspreis	:	379,55 EUR		39.852,75
36 02 03	ZW 03				Z	
		Lohn	:	47,00		
		Sonstiges	:	189,00		
	110,00 m ²	Einheitspreis	:	236,00 EUR		25.960,00
36 02 04	ZW 02				Z	
		Lohn	:	47,00		
		Sonstiges	:	92,00		
	20,00 m ²	Einheitspreis	:	139,00 EUR		2.780,00

Positionsnummer	ZA Positionstext	Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36 02 05	ZW 01					Z	
			Lohn	:	72,40		
			Sonstiges	:	154,70		
	Ę	55,00 m2	Einheitspreis	:	227,10 EUR		12.490,50
36 02	Wandkonst	ruktion					116.964,50
36 03	Dach- un	d Bodenk	onstruktion			Z	
36 03 01	FD 01					Z	
			Lohn	:	44,00		
			Sonstiges	:	256,00		
	32	25,00 m2	Einheitspreis	:	300,00 EUR		97.500,00
36 03 02	DD 01					Z	
			Lohn	:	97,20		
			Sonstiges	:	133,00		
	32	25,00 m2	Einheitspreis	:	230,20 EUR		74.815,00
36 03	Dach- und	Bodenkonst	truktion				172.315,00
36 05	PfostenR	iegelkons	struktion			Z	
36 05 01	Glaselemer	nte				Z	
			Lohn	:	200,00		
			Sonstiges	:	275,00		
	ę	99,00 m2	Einheitspreis	:	475,00 EUR		47.025,00
36 05 02	Az Portale	und Eingän				Z	
			Lohn	:	300,00		
			Sonstiges	:	400,00		
	2	25,00 m2	Einheitspreis	:	700,00 EUR		17.500,00
36 05	PfostenRie	gelkonstruk	tion				64.525,00
36	Holzbauarb	eiten					397.954,50

Zusammenstellung (EUR)

		477.545,40		
		Gesamtpreis in EUR Umsatzsteuer	20,00 %	397.954,50 79.590,90
LG	36	Holzbauarbeiten		397.954,50
U1	36 05	PfostenRiegelkonstruktion	64.525,0	00
U1	36 03	Dach- und Bodenkonstruktion	172.315,0	00
U1	36 02	Wandkonstruktion	116.964,	50
U1	36 01	Baustellegemeinkosten	44.150,	00

Kostenschätzung Holzbauarbeiten

Bauvorhaben: KIGA Linz Type 3

Ing. Georg Kumpfmüller Bauges.m.b.H. & Co KG Ausschreiber:

Pfarrkirchen 34 4141 Pfarrkirchen im Mühlkreis

Angebotssumme inkl. UST	EUR	756.399,60	
20,00 % Mehrwertsteuer	EUR	126.066,60	
Angebotssumme netto	EUR	630.333,00	

Leistungsverzeichnis / EUR

KIGA Linz Type 3

Positionsnummer	ZA Positionstext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36	Holzbauarbeiten				Z	
36 01	Baustellegemeink	osten			Z	
36 01 01	Baustelleneinrichtung				Z	
	· ·	Lohn	:	0,00		
		Sonstiges	:	25.000,00		
	1,00 Pa	Einheitspreis	:	25.000,00 EUR		25.000,00
36 01 02	Transport + Kran				Z	
		Lohn	:	0,00		
		Sonstiges	:	35.000,00		
	1,00 Pa	Einheitspreis	:	35.000,00 EUR		35.000,00
36 01 03	Baustelle räumen				Z	
		Lohn	:	0,00		
		Sonstiges	:	8.000,00		
	1,00 Pa	Einheitspreis	:	8.000,00 EUR		8.000,00
36 01 04	Gerüste Fassade				Z	
		Lohn	:	0,00		
		Sonstiges	:	5,00		
	330,00 m2	Einheitspreis	:	5,00 EUR		1.650,00
36 01	Baustellegemeinkoste	en				69.650,00
36 02	Wandkonstruktion	n			Z	
36 02 01	AW 01				Z	
		Lohn	:	78,20		
		Sonstiges	:	208,85		
	175,00 m2	Einheitspreis	:	287,05 EUR		50.233,75
36 02 02	AW 02				Z	
		Lohn	:	82,40		
		Sonstiges	:	297,15		
	155,00 m2	Einheitspreis	:	379,55 EUR		58.830,25
36 02 03	ZW 03				Z	
		Lohn	:	47,00		
		Sonstiges	:	189,00		
	135,00 m2	Einheitspreis	:	236,00 EUR		31.860,00
36 02 04	ZW 02			Е	Z	
		Lohn	:	47,00		
		Sonstiges	:	92,00		
	20,00 m2	Einheitspreis	:	139,00 EUR		******

Positionsnummer	ZA Positionstext Menge	EH		P ZZ V Preisanteile	w G K	Positionspreis
36 02 05	ZW 01			E	Z	
		Lohn	:	72,40		
		Sonstiges	:	154,70		
	55,00	m2 Einheitspreis	:	227,10 EUR		*******
36 02	Wandkonstruktio	n				140.924,00
36 03	Dach und Bo	denkonstruktion			Z	
36 03 01	FD 01	delikolisti uktioli			Z	
30 03 01	FDUI	Lohn	:	44,00	۷	
		Sonstiges	:	256,00		
	670,00	m2 Einheitspreis	:	300,00 EUR		201.000,00
36 03 02	DD 01				Z	
		Lohn	:	97,20		
		Sonstiges	:	133,00		
	670,00	m2 Einheitspreis	:	230,20 EUR		154.234,00
36 03	Dach- und Boder	nkonstruktion				355.234,00
36 05	PfostenRiege	lkonstruktion			Z	
36 05 01	Glaselemente				Z	
		Lohn	:	200,00		
		Sonstiges	:	275,00		
	99,00	m2 Einheitspreis	:	475,00 EUR		47.025,00
36 05 02	Az Portale und E	ingänge			Z	
		Lohn	:	300,00		
		Sonstiges	:	400,00		
	25,00	m2 Einheitspreis	:	700,00 EUR		17.500,00
36 05	PfostenRiegelko	nstruktion				64.525,00
36	Holzbauarbeiten					630.333,00

Zusammenstellung (EUR)

		Angebotspreis (zivilrechtlicher Preis) in EUR		
		Gesamtpreis in EUR Umsatzsteuer	20,00 %	630.333,00 126.066,60
LG	36	Holzbauarbeiten		630.333,00
U1	36 05	PfostenRiegelkonstruktion	64.525,00)
U1	36 03	Dach- und Bodenkonstruktion	355.234,00)
U1	36 02	Wandkonstruktion	140.924,00)
U1	36 01	Baustellegemeinkosten	69.650,00)

Kostenschätzung Holzbauarbeiten

KIGA Linz Type 4 Bauvorhaben:

Ing. Georg Kumpfmüller Bauges.m.b.H. & Co KG Ausschreiber:

Pfarrkirchen 34

4141 Pfarrkirchen im Mühlkreis

Angebotssumme netto 20,00 % Mehrwertsteuer **EUR** 696.187,25 EUR 139.237,45 Angebotssumme inkl. UST EUR 835.424,70

Leistungsverzeichnis / EUR

KIGA Linz Type 4

Positionsnummer	ZA Positionst	ext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36	Holzba	auarbeiten				Z	
36 01	Bauste	llegemeink	osten			Z	
36 01 01	Baustelle	eneinrichtung				Z	
			Lohn	:	0,00		
			Sonstiges	:	25.000,00		
		1,00 Pa	Einheitspreis	:	25.000,00 EUR		25.000,00
36 01 02	Transpor	rt + Kran				Z	
			Lohn	:	0,00		
			Sonstiges	:	35.000,00		
		1,00 Pa	Einheitspreis	:	35.000,00 EUR		35.000,00
36 01 03	Baustelle	e räumen				Z	
			Lohn	:	0,00		
			Sonstiges	:	8.000,00		
		1,00 Pa	Einheitspreis	:	8.000,00 EUR		8.000,00
36 01 04	Gerüste	Fassade				Z	
			Lohn	:	0,00		
			Sonstiges	:	5,00		
		330,00 m2	Einheitspreis	:	5,00 EUR		1.650,00
36 01	Baustelle	egemeinkoste	n				69.650,00
36 02	Wandk	onstruktion	1			Z	
36 02 01	AW 01					Z	
			Lohn	:	78,20		
			Sonstiges	:	208,85		
		135,00 m2	Einheitspreis	:	287,05 EUR		38.751,75
36 02 02	AW 02					Z	
			Lohn	:	82,40		
			Sonstiges	:	297,15		
		190,00 m2	Einheitspreis	:	379,55 EUR		72.114,50
36 02 03	ZW 03					Z	
			Lohn	:	47,00		
			Sonstiges	:	189,00		
		195,00 m2	Einheitspreis	:	236,00 EUR		46.020,00
36 02 04	ZW 02				Е	Z	
			Lohn	:	47,00		
			Sonstiges	:	92,00		
		20,00 m2	Einheitspreis	:	139,00 EUR		*******

Positionsnummer	ZA Positionst	ext Menge EH			P ZZ V Preisanteile	wGK /	Positionspreis
36 02 05	ZW 01				E	Z	
00 02 00			Lohn	:	72,40	_	
			Sonstiges	:	154,70		
		55,00 m2	Einheitspreis	:	227,10 EUR		******
36 02	Wandko	nstruktion					156.886,25
36 03	Dach-	und Bodonk	construktion			Z	
36 03 01	FD 01	una Boaem	COLISCIANCIOLI			Z	
30 03 01	1001		Lohn	:	44,00	۷	
			Sonstiges	:	256,00		
		630,00 m2	Einheitspreis	:	300,00 EUR		189.000,00
36 03 02	DD 01					Z	
			Lohn	:	97,20		
			Sonstiges	:	133,00		
		630,00 m2	Einheitspreis	:	230,20 EUR		145.026,00
36 03	Dach- ur	nd Bodenkons	truktion				334.026,00
36 05	Pfoste	nRiegelkons	struktion			Z	
36 05 01	Glaseler	•				Z	
			Lohn	:	200,00	_	
			Sonstiges	:	275,00		
		175,00 m2	Einheitspreis	:	475,00 EUR		83.125,00
36 05 02	Az Porta	ıle und Eingän	ge			Z	
			Lohn	:	300,00		
			Sonstiges	:	400,00		
		75,00 m2	Einheitspreis	:	700,00 EUR		52.500,00
36 05	PfostenF	Riegelkonstruk	tion				135.625,00
36	Holzbau	arbeiten					696.187,25

Zusammenstellung (EUR)

		Angebotspreis (zivilrechtlicher I	Preis) in EUR	835.424,70		
		Gesamtpreis in EUR Umsatzsteuer	20,00 %	696.187,25 139.237,45		
LG	36	Holzbauarbeiten		696.187,25		
U1	36 05	PfostenRiegelkonstruktion	135.625,00			
U1	36 03	Dach- und Bodenkonstruktion	334.026,0	00		
U1	36 02	Wandkonstruktion	156.886,25			
U1	36 01	Baustellegemeinkosten	69.650,0	00		

Kostenschätzung Holzbauarbeiten

Bauvorhaben: KIGA Linz Type 2 (KLH)

Ing. Georg Kumpfmüller Bauges.m.b.H. & Co KG Ausschreiber:

Pfarrkirchen 34

4141 Pfarrkirchen im Mühlkreis

Angebotssumme netto 20,00 % Mehrwertsteuer	EUR EUR	396.292,00 79.258,40	
Angebotssumme inkl. UST	EUR	475.550,40	

Leistungsverzeichnis / EUR

KIGA Linz Type 2 (KLH)

Positionsnummer	ZA Positionstext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36	Holzbauarbeiten				Z	
36 01	Baustellegemeink	osten			Z	
36 01 01	Baustelleneinrichtung				Z	
		Lohn	:	0,00		
		Sonstiges	:	15.000,00		
	1,00 Pa	Einheitspreis	:	15.000,00 EUR		15.000,00
36 01 02	Transport + Kran				Z	
		Lohn	:	0,00		
		Sonstiges	:	22.000,00		
	1,00 Pa	Einheitspreis	:	22.000,00 EUR		22.000,00
36 01 03	Baustelle räumen				Z	
		Lohn	:	0,00		
		Sonstiges	:	6.000,00		
	1,00 Pa	Einheitspreis	:	6.000,00 EUR		6.000,00
36 01 04	Gerüste Fassade				Z	
		Lohn	:	0,00		
		Sonstiges	:	5,00		
	230,00 m2	Einheitspreis	:	5,00 EUR		1.150,00
36 01	Baustellegemeinkoste	n				44.150,00
36 02	Wandkonstruktion	1			Z	
36 02 01	AW 01 (KLH)				Z	
	,	Lohn	:	70,20		
		Sonstiges	:	251,85		
	125,00 m2	Einheitspreis	:	322,05 EUR		40.256,25
36 02 02	AW 02 (KLH)				Z	
	,	Lohn	:	70,20		
		Sonstiges	:	251,85		
	105,00 m2	Einheitspreis	:	322,05 EUR		33.815,25
36 02 03	ZW 03				Z	
		Lohn	:	47,00		
		Sonstiges	:	189,00		
	110,00 m2	Einheitspreis	:	236,00 EUR		25.960,00
36 02 04	ZW 02				Z	
		Lohn	:	47,00	-	
		Sonstiges	:	92,00		
	20,00 m2	Einheitspreis	:	139,00 EUR		2.780,00

Positionsnummer	ZA Positions	text Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36 02 05	ZW 01					Z	
			Lohn	:	72,40	_	
			Sonstiges	:	154,70		
		55,00 m2	Einheitspreis	:	227,10 EUR		12.490,50
36 02	Wandko	onstruktion					115.302,00
36 03	Doob	und Badanl	construktion			Z	
36 03 01	FD 01	una Boaeni	CONSTRUCTION			Z	
36 03 01	FDUT		Lohn		44,00	۷	
			Sonstiges	:	256,00		
		325,00 m2	Einheitspreis	:	300,00 EUR		97.500,00
36 03 02	DD 01					Z	
			Lohn	:	97,20		
			Sonstiges	:	133,00		
		325,00 m2	Einheitspreis	:	230,20 EUR		74.815,00
36 03	Dach- u	nd Bodenkons	truktion				172.315,00
36 05	Pfoste	nRiegelkon	struktion			Z	
36 05 01	Glasele					Z	
00 00 01	Cidoolo	monto	Lohn	:	200,00	_	
			Sonstiges	:	275,00		
		99,00 m2	Einheitspreis	:	475,00 EUR		47.025,00
36 05 02	Az Port	ale und Eingän	ge			Z	
			Lohn	:	300,00		
			Sonstiges	:	400,00		
		25,00 m2	Einheitspreis	:	700,00 EUR		17.500,00
36 05	Pfosten	Riegelkonstruk	tion		·		64.525,00
36	Holzbau	ıarbeiten					396.292,00

Zusammenstellung (EUR)

Angebotspreis (zivilrechtlicher Preis) in EUR				475.550,40		
		Gesamtpreis in EUR Umsatzsteuer	20,00 %	396.292,00 79.258,40		
LG	36	Holzbauarbeiten		396.292,00		
U1	36 05	PfostenRiegelkonstruktion	64.525,00			
U1	36 03	Dach- und Bodenkonstruktion	172.315,00			
U1	36 02	Wandkonstruktion	115.302,00			
U1	36 01	Baustellegemeinkosten	44.150,00			

Kostenschätzung Holzbauarbeiten

Bauvorhaben: KIGA Linz Type 2 (RW-Riegelwand)

Ing. Georg Kumpfmüller Bauges.m.b.H. & Co KG Ausschreiber:

Pfarrkirchen 34

4141 Pfarrkirchen im Mühlkreis

Angebotssumme netto 20,00 % Mehrwertsteuer	EUR EUR	385.344,00 77.068,80	
Angebotssumme inkl. UST	EUR	462.412,80	

Leistungsverzeichnis / EUR

KIGA Linz Type 2 (RW-Riegelwand)

Positionsnummer	ZA Positionstext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
36	Holzbauarbeiten				Z	
36 01	Baustellegemeink	osten			Z	
36 01 01	Baustelleneinrichtung				Z	
		Lohn	:	0,00		
		Sonstiges	:	15.000,00		
	1,00 Pa	Einheitspreis	:	15.000,00 EUR		15.000,00
36 01 02	Transport + Kran				Z	
		Lohn	:	0,00		
		Sonstiges	:	22.000,00		
	1,00 Pa	Einheitspreis	:	22.000,00 EUR		22.000,00
36 01 03	Baustelle räumen				Z	
		Lohn	:	0,00		
		Sonstiges	:	6.000,00		
	1,00 Pa	Einheitspreis	:	6.000,00 EUR		6.000,00
36 01 04	Gerüste Fassade				Z	
		Lohn	:	0,00		
		Sonstiges	:	5,00		
	230,00 m2	Einheitspreis	:	5,00 EUR		1.150,00
36 01	Baustellegemeinkoste	n				44.150,00
36 02	Wandkonstruktion	1			Z	
36 02 01	AW 01 (Riegelwand)				Z	
		Lohn	:	71,80		
		Sonstiges	:	202,65		
	125,00 m2	Einheitspreis	:	274,45 EUR		34.306,25
36 02 02	AW 02 (Riegelwand)				Z	
		Lohn	:	71,80		
		Sonstiges	:	202,65		
	105,00 m2	Einheitspreis	:	274,45 EUR		28.817,25
36 02 03	ZW 03				Z	
		Lohn	:	47,00		
		Sonstiges	:	189,00		
	110,00 m2	Einheitspreis	:	236,00 EUR		25.960,00
36 02 04	ZW 02				Z	
		Lohn	:	47,00		
		Sonstiges	:	92,00		
	20,00 m2	Einheitspreis	:	139,00 EUR		2.780,00

Positionsnummer	ZA Position	nstext Menge EH			P ZZ V Preisanteile	wGK	Positionspreis
						_	
36 02 05	ZW 01	l	Lohn		72,40	Z	
			Sonstiges	:	154,70		
		55,00 m2	Einheitspreis	:	227,10 EUR		12.490,50
36 02	Wand	konstruktion					104.354,00
36 03	Doob	- und Bodenk	ronotwiktion			Z	
36 03 01	FD 01	- una Boaenr	Konstruktion			Z	
36 03 01	FDUI		Lohn	:	44,00	۷	
			Sonstiges	:	256,00		
		325,00 m2	Einheitspreis	:	300,00 EUR		97.500,00
36 03 02	DD 01					Z	
			Lohn	:	97,20		
			Sonstiges	:	133,00		
		325,00 m2	Einheitspreis	:	230,20 EUR		74.815,00
36 03	Dach-	und Bodenkons	truktion				172.315,00
36 05	Pfost	tenRiegelkons	struktion			Z	
36 05 01		lemente				Z	
	0.000		Lohn	:	200,00	_	
			Sonstiges	:	275,00		
		99,00 m2	Einheitspreis	:	475,00 EUR		47.025,00
36 05 02	Az Po	rtale und Eingän	ge			Z	
		0	Lohn	:	300,00		
			Sonstiges	:	400,00		
		25,00 m2	Einheitspreis	:	700,00 EUR		17.500,00
36 05	Pfoste	nRiegelkonstruk	tion				64.525,00
36	Holzba	auarbeiten					385.344,00

Zusammenstellung (EUR)

	Angebotspreis (zivilrechtlicher Preis) in EUR			
	Gesamtpreis in EUR Umsatzsteuer	20,00 %	385.344,00 77.068,80	
LG 36	Holzbauarbeiten		385.344,00	
U1 36 05	PfostenRiegelkonstruktion	64.525,00		
U1 36 03	Dach- und Bodenkonstruktion	172.315,00		
U1 36 02	Wandkonstruktion	104.354,00)	
U1 36 01	Baustellegemeinkosten	44.150,00)	

Schlußfolgerung

Die Ausgangsfragestellung:

"ob und mit welchen Mitteln die verwendeten gestalterischen Mittel:

- HBV-element als Sichtelement
- Dämmschichte
- mehrschaliges Polycarbonat-Lichtelement

übertragen werden können auf die Funktion eines Kindergartens als Gebäude der Öffentlichen Hand"

kann - unter Einhaltung der Vorgaben der OIB 2011 - positiv beantwortet werden.

GRUNDLAGEN

Kindergarten

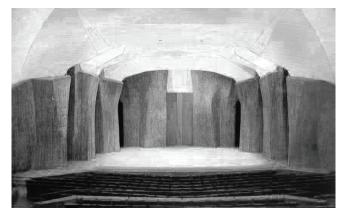
Der Kindergarten

Entwicklung einer Typologie

Die relativ junge Geschichte des Kindergartens beginnt Anfang des 19. Jahrhunderts.

Der Schweizer Johann Heinrich Pestalozzi rückt das Kleinkind erstmals in das Zentrum der pädagogischen Aufmerksamkeit. Er ist von den Texten der französischen Aufklärung, insbesondere von Rosseaus Lehre, welche auf die Natur des Kindes an sich eingeht, inspiriert. Wobei er sich von Rosseaus Idee der Erziehung des Kindes in Isolation abwendet, ja stattdessen im Kontext des gemeinsamen Lernens verschiedene Stimuli einführt, und den Ursprung allen Lernens auf die Sinneseindrücke zurückführt, welche in Zahl, Form und Sprache auf den Geist des Kindes wirken.

Der schottische Industrielle Robert Owen nimmt Pestalozzis Ideen auf und führt 1816 die organisierte pädagogische Erziehung der Kinder seiner Arbeiter ein. Früh erkennt er die Probleme welche die Industrialisierung für das Leben der Kinder mit sich bringt. Oft gehen beide Elternteile tagsüber zur Arbeit, sind am Abend ohne Energie, und die Erziehung der Kinder bleibt auf der Strecke. Owen schafft es jedoch diese Erscheinung positiv zu nutzen, er orientiert sich an dem Theorem des Sozialtheoritkers John Locke, und nutzt die Erziehung als Instrument der sozialen Bewusstseinbildung, um dem Ideal einer klassenlosen, sozialistischen Gesellschaft ein Stück näherzukommen. Die Erziehung der Kinder


ist streng strukturiert: Sie werden in altersgerechte Gruppen aufgeteilt, besuchen vom zweiten bis zum zehnten Lebensjahr zuerst den Kindergarten, dann die Schule. Die Zehnjährigen besuchen mit den Erwachsenen die Abendschule, und arbeiten mit diesen tagsüber. Ein Unterschied zwischen Pestalozzi und Owen besteht in der tatsächlichen Umsetzung der erzieherischen Tätigkeit: Während Pestalozzi Wert auf den geistig-künstlerischen **Aspekt** legt, konzentriert sich Owen mehr auf die physisch-praktische Entwicklung des Kindes. Eine Erklärung hierfür ist die intellektuelle Kluft zwischen den beiden.

Friedrich Froebel wiederum geht im Laufe des 19. Jahrhunderts vermehrt auf die eigentlichen Bedürfnisse des Kindes ein. Für ihn stehen Individualität und Einzigartigkeit der Jungen und Mädchen im Vordergrund. Er erkennt das spielerische Lernen als das natürlichste Konzept, welches ohne strenger Disziplin auskommt, und trotzdem eine gerichtete Entwicklung der Kinder fördert. 1837 gründet er eine Schule für Kleinkinder in Thüringen, Deutschland.

Bertha Ronge, eine Schülerin Froebels etabliert im Raum Hamburg 1855 einige Kindergärten. Diese bestehen aus zwei Räumen, der eine ist wie ein klassisches Klassenzimmer möbliert,

KIGA.001 Pestalozzi im Kreis seiner Kinder. Der Innenraum für sich ist in seiner Gestaltung sehr zurückhaltend.

KIGA.002
Der Ausdruck des Innenraums in der anthroposophischen Architektur nach
Steiner anhand des Bühnensaals der Waldorfschule
Heidenheim

der andere enthält nichts, bis auf ein Klavier, und dient gleichzeitig als Zugang zum Garten. Diese beiden Räume sind in ihrer Funktion klar determiniert, und fördern in ihrer Unterschiedlichkeit einen abwechslungsreichen Lernalltag.

Die "Case dei Bambini", welches Maria Montessori 1906 in Rom einführt, soll den oftmals vernachlässigten Kindern aus den Miethäusern der Stadt eine pädagogische Erziehung bieten. Für alle Kinder eines Hauses wird auf Kosten der Gemeinschaft ein großer Raum eingerichtet, welcher in seiner Möblierung an die Größe der Kinder angepasst ist. Die Einrichtung ist leicht und beweglich. Montessori entwickelt auch ein Reihe an Gymnastikübungen, um die

Koordination der Kinder zu fördern.

Rudolf Steiners Beitrag zur Kindeserziehung ist eine Weiterführung von Froebels Idee des natürlichen Lernens im Spiel. Die von ihm entwickelten Waldorfschulen sollen in ihrer Architektur einen idealen Raum für den Nachwuchs bilden. Der Innenraum als räumliche Höhle, vom rechten Winkel befreit, war Steiners recht expressive Übersetzung dieser Vision in die Wirklichkeit. Des weiteren soll die Waldorfschule ein Beitrag zur Verringerung des sozialen Gefälles zwischen Arm und Reich sein. Die erste Waldorfschule in England wurde 1925 eröffnet, 1990 gab es bereits in 25 verschiedenen Länder über 500 Waldorfschulen.

Dieser Text bildet eine Zusammenfassung aus dem Buch Kindergarten Architecture von Mark Dudek. vgl. KIGA.001

Raum- und Materialpädagogik

"Lehren und Lernen Der Kindergarten ist der erste öffentliche, nicht familiäre Wohnraum des Kindes; er ist ein erster Lernraum in einem erweiterten sozialen Umfeld. Kindergärten sind im Zeichen der innigen Beziehung zwischen pädagogischen Konzepten und deren Manifestationen in gebauter Form zu verstehen und zu beurteilen. Dafür hat sich heutzutage das Sinnbild vom "Raum als Erzieher" und vom "aktiven Raum" etabliert.

Allerdings ist gebauter Raum manchmal langlebiger als eine Lehrmeinung; der pädagogische Raum muss also nicht nur "lehren", sondern auch selbst "lernen" können. Kindergartenbauten stehen somit in einem Spannungsfeld zwischen einer Räumlichkeit, die auf eine spezifische gegebene Pädagogik zugeschnitten ist, und den Veränderungen, denen gegenüber er offen sein sollte. Dass der gebaute Kindergarten nicht einfach nur den geforderten gesetzlichen Normen exakt angemessen sein soll, heißt auch, dass ArchitektInnen als AnwältInnen der Kinder auftreten müssen. Sie müssen darauf beharren, dass die Einhaltung von Mindestraummaßen nicht gut genug ist, dass Kindergartenbau keine Frage von quantifizierten Zuteilungen ist, dass es stattdessen

um die Qualitäten von Räumen geht, in denen Kinder sich bewegen, essen, lernen, spielen und ruhen können. In den folgenden und davon ausgehenden Beschreibungen steht Holz nicht nur für nachhaltiges Bauen, gutes Raumklima und einen angenehmen Geruch, für ein erlebnisreiches und gleichzeitig robustes Baumaterial, das gerne zur Gestaltung von Maßstäblichkeit und Atmosphäre im Innen- und Außenraum eingesetzt wird, sondern auch für ein Material, das in der Beziehung zwischen pädagogischem Konzept und räumlicher Ausformulierung eine Rolle spielt.

Trennen und behüten Ein historisch präg

Ein historisch prägnantes Beispiel für die Verräumlichung eines Kindergartenkonzepts, das von einer strengen Einteilung in Gruppen ausgeht, ist der Entwurf eines Pavillonsystems von Margarete Schütte-Lihotzky aus dem Jahr 1929, das sie mit dem Kindergarten Rinnböckstraße 1961 bis 1963 in Wien realisierte. Im Sinn der funktionalistisch, medizinisch und pädagogisch motivierten Moderne geht es in diesem Kindergartentyp darum, einzelne Gruppen in klar strukturierten, voneinander scharf getrennten Pavillons mit zugehörigen Freilufthöfen unterzubringen. Das hatte den Sinn, um

sich greifende Kinderkrankheiten oder von Kind zu Kind springende Läuse gruppenweise isolieren zu können. Nicht einmal Baumläuse hätten bei diesem Konzept eine Chance auf Verbreitung gehabt, da jeder Gruppe ihr Hof und jedem Hof sein Baum zugewiesen wurde. Übersichtlichkeit sowie die Schutz- und Fürsorgefunktion dieses Grundrisses gehen hier mit einer Reglementierung der kindlichen Umgebung einher.

Dieses traditionelle Gruppenraumkonzept wird öffentlichen Kindergärten durch die österreichische Bauordnung bis heute weiter vorgeschrieben, auch wenn PädagogInnen die Ergebnisse dieser Normierung improvisierend aufzuweichen versuchen, indem sie etwa über starre Mauern hinweg Gruppen mischen. Den seit den 1970er Jahren mit Begriffen wie "vermauerte Kindheit" kritisierten Erziehungsbauten stehen natürlich schon lange reformpädagogische Konzepte gegenüber, die für die Selbstständigkeit der Kinder, für das Selbsterlernen und die Kultivierung von sozialem und emotionalem Wissen eintreten. Diesen Überlegungen entsprechen alternative Raumkonzepte, die auch für öffentliche Kindergärten von Belang sind.

Erleben und reduzieren Wenn es in Rudolf Steiners Waldorf-Pädagogik darum KIGA.003 Gabu Heindl "Offene Kindergärten" Zuschnitt 37. März 2010 Seite 18f geht, die fixe Rhythmik des chronometrischen Tagesund Wochenablaufs durch starke Bezüge zu Jahreszeiten und Wetter zu ergänzen, wird deutlich, wie wichtig großzügige Innen- und Außenbeziehungen sind. Als sinnliches und gleichzeitig mathematisch abstrahierbares (Spiel-)Material ist Holz nicht nur in Montessori-Kindergärten wichtig. In der Pädagogik nach Maria Montessori nimmt sich der/die menschliche ErzieherIn so weit wie möglich zurück, im Waldkindergarten tut dies sogar der gebaute Raum in seiner Erziehungsfunktion: Hier hält die Architektur sich so weit zurück, dass es gar kein Gebäude mehr gibt, dass die Kinder nicht nur mit Holz spielen, sondern im Holz - und zwar im Holz in seiner nach wie vor unüberbietbar nachhaltigsten, nämlich unbearbeiteten Form. Der Wald selbst fungiert als aktiver Raum des Kindergartens; das Holz der Bäume bietet Dach, Windschutz und erlebnisintensiven Lernraum. In diesem in Skandinavien entwickelten Erziehungsraumtypus ist die Betonung des "Gärtnerischen" am Kindergarten am stärksten.

Öffnen und fordern Insofern, als das spielende Lernen im Kindergarten immer schon Einübung in einen kommenden Arbeitsalltag ist, geht es heute darum, sich auf Arbeitsformen auszurichten, die vor allem von Kreativitätsforderungen bestimmt sind. Hier wäre auch von der Reggio-Pädagogik zu sprechen - mit ihrem Fokus auf die Entwicklung von Kreativität und ihrem Konzept der "sprechenden Wände" - und nicht zuletzt vom Raumkonzept des "offenen Kindergartens", in dessen Richtung innovative öffentliche Kindergartenkonzepte heute weisen: Diese aktuelle Programmatik fordert entgegen den Schemata der Bauordnung – die Auflösung fixer Gruppenräume und die Gestaltung von Funktionsbereichen wie Ruhe, Kommunikation oder Bewegung, die die Kinder frei wählen können und in denen sie sich tendenziell in unterschiedlich großen Gruppen selbst organisieren.

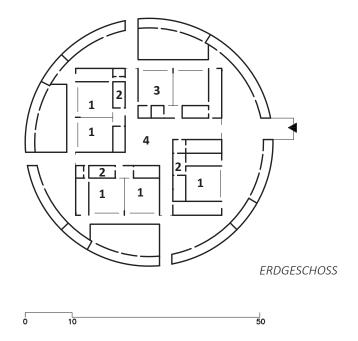
Der Abbruch von pädagogisch-räumlichen Wänden für einen offenen Kindergartenbetrieb verläuft parallel zu schulischen Lehrkonzepten, die ebenfalls dynamische Gruppenarbeit gegenüber Frontalunterricht im fixen Klassenzimmer bevorzugen. Ein gutes Beispiel für eine Verräumlichung dieses Erziehungskonzepts - bei dem einmal mehr Holz eine wichtige gestalterische Rolle spielt - ist der 2007 erbaute städtische "Fuji Kindergarten" von Tezuka Architects in Japan. Im Gegensatz zu Schütte-Lihotzkys Raumstrukturierung zeigt dessen Grundriss "offene Gruppen" unter einem gemeinsamen Dach rund um einen zentralen Garten. Während der geschlossene Innenhof noch überschaubar ist, hat das Dach Erlebnisqualitäten, die mit denen des Waldkindergartens vergleichbar sind: Das für die Kinder begehbare Dach ist von Bäumen durchstoßen. Die Dach-Löcher rund um die Stämme sind nur mit Netzen gesichert, in die die Kinder - ob risikofreudig oder einfach nur verspielt - hineinspringen können, was sie auch gerne tun. Das "Herausfordern" der Kinder steht hier der Sorge um ihre Sicherheit produktiv gegenüber."

Recherchebeispiele

Alle Recherechebeispiele wurden nach den Kriterien der Umsetzbarkeit in Holz-Beton-Verbund-Fertigteilsystemen ausgewählt.

Sie sollen als Inspiration dienen, d.h. nicht alle Projekte sind zu 100% in den Holzhybrid-Bau zu übersetzen. Diese Projekte wurden aufgrund einzelner Aspekte, die interessant für eine Konfiguration in Holz-Hybrid-Bauweise erscheinen, ausgewählt. Sie sind gegliedert in die für folgende für den Entwurf relevanten Typologien, die sich auch in den Typen 2/3/4

wiederfinden:


- Marktplatz
- N-S (Bewegungsraum)
- Eigene Eingänge
- Atrium
- Holzbau

Auch wenn Holzbau keine eigene Typologie darstellt so schien dies die beste Form der Unterteilung zu sein.

Typologie. Marktplatz

KGA.Campo Baeza **Benetton Nursery**

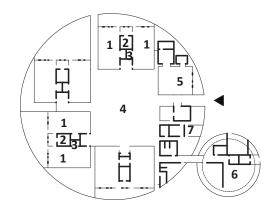
Alberto Campo Baeza 2007 Ponzano Veneto, Treviso, Italien Betonbau

- 1 Gruppenraum
- 2 Nasszelle
- 3 Essensraum
- 4 Marktplatz

Die Grundform dieses Gebäudes ist ein Quadrat, welches durch neun Boxen beschrieben wird. Um einen vermehrten Lichteintrag über die Korridore zu gewährleisten ist das zentrale Quadrat erhoben. Die Gruppenräume sind in den umgrenzenden Boxen angeordnet. Das Quadrat ist in einen Kreis eingeschrieben, der das Gebäude mit einer zweischaligen Wand nach Außen abschließt. Vier zum Himmel offene Innenhöfe entstehen, sie repräsentieren die vier Elemente: Luft,

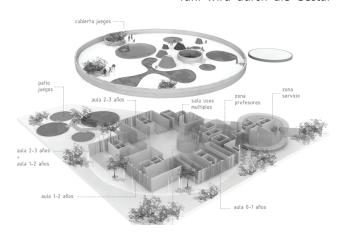
Erde, Feuer und Wasser. Der zentral gelegene Raum erinnert in seiner Weise das Sonnenlicht durch Öffnungen in der Decke sowie in der Fassade aufzunehmen an einen Hammam.

KGA.Campo Baeza.PLAN KGA.Campo Baeza.001 KGA.Campo Baeza.002 KGA.Campo Baeza.003



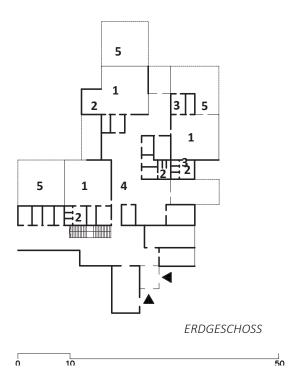
KGA.Rueda.Pizarro **Kindergarten**

Rueda Pizarro Arquitectos 2012 Madrid / Spanien


ERDGESCHOSS

Der viereckige zentrale Platz tung des Platzes stimuliert. dieses Kindergartens dient Runde Oberlichter und Inals öffentlicher Raum, von nenhöfe nehmen die Grundwelchem alle Gruppenräugeometrie des Kreises auf erschlossen werden und lassen den Neubau zu können. Innen und Außen einem Setzkasten mit einer gehen ineinander über. Takhübschen Dachlandschaft tiles und visuelles Raumgewerden. Etwas versteckt fühl wird durch die Gestalliegt hinter dem Hauptge-

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Marktplatz
- 5 Gemeinschaftszone
- 6 Küche
- 7 Verwaltung


bäude ein ebenfalls kreisförmiger kleinerer Anbau mit einem verglasten Rundgang – auch bei der Platzgestaltung des schmalen, dreieckigen Grundstücks dominieren runde Felder und Sandkästen.

KGA.Rueda.Pizarro.PLAN KGA.Rueda.Pizarro.001

KGA.Rueda.Pizarro.002

KGA.PPAG.architects **Kindergarten**

PPAG architects 2012-2014 Wien / Österreich Teil eines BILDUNGS CAMPUS - Kindergarten, Volksschule,Hauptschule

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Marktplatz
- 5 Terrasse

Um einen zentralen Marktplatz herum ist dieser Kindergarten angeordnet. Die im Erdgeschoss befindlichen Gruppenräume öffnen sich gegen den Marktplatz, stellen die Verbindung nach Außen her. In dem Gebäudeensemble aus vor- und rückspringenden Fassaden ergeben sich sowohl schattige Rückzugsorte, als auch sonnige Terrassen. Ein durchdachtes Brandschutzkonzept erlaubt es, die Innenräume intensiver an die Bedürfnisse der Kinder anzupassen. Der Bildungscampus, der

durch Volks- und Hauptschule vervollständigt wird besitzt einen großen Turnsaal und eine Bibliothek, die beide von allen Altersgruppen benützt werden. Es ensteht Raum für den Austausch zwischen den Älteren und Jüngeren.

KGA.PPAG.architects.PLAN KGA.PPAG.architects.001

KGA.JSWD Miniapolis day care centre

JSWD Architekten 2012 Essen/Deutschland Wellblechfassade

ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle/Garderobe
- 3 Marktplatz
- 4 Essensraum
- 5 Küche

Das Tagesbetreuungszentrum erhebt sich als Zweigeschosser in klarer geometrischer Konstruktion. Wellblechelemente bilden die rau anmutende Außenhülle. Sie sollen in ihrer Anordnung einen fließenden Übergang schaffen zwischen

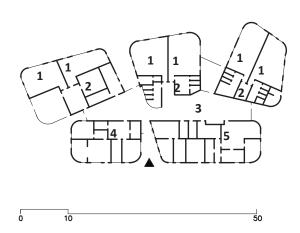
Vertikalität und Horizontalität. Die warmen, glatten Oberflächen im Inneren des Gebäudes kontrastieren die Rohheit der Außenhülle. Der überdachte Innehof im Zentrum wird umschlossen von einem symmetrischen Arrangement aus drei Grup-

penbereichen und einem Aufenthaltsbereich für die Betreuer. Der Innenhof bietet Raum für gemeinsamen Aktivitäten-ist Begegnungsstätte. Sechs Gruppenräume sind um diesen "Dorfplatz" über die zwei Stockwerke angeordnet.

KGA.JSWD.PLAN KGA.JSWD.001 "rough shell" -metallic envelope with vertically oriented, corrugated stainless steel sheets

KGA.CEBRA.01 Kindergarten

CEBRA in progress Vonsild/Denmark


Fünf tropfenförmige Elemente bilden diesen Kindergarten.

Zwei Tropfen dienen als Stau- und Aufenthaltsraum für die Betreuer, die drei Anderen sind Gruppenräume für die Kinder.

Die Tropfen der Kinder öffnen sich zum Garten hin und bieten Ausblick in die umgebende Landschaft.

Im Garten wiederholt sich die Form der Tropfen wie ein Echo, und lässt das Gebäude in die Landschaft übergehen. Zwischen den einzelnen Volumen entsteht geschützte Bereiche. Sie sind eine Erweiterung des Innenraums und funktionieren gleichsam als Verbindung zwischen den Tropfen.

Jeder der Tropfen dient einem bestimmten erzieherischen Zweck, die Kinder lernen spielerisch über Farbe, Form und Geometrie.

ERDGESCHOSS

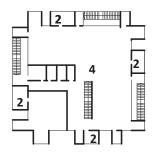
- 1 Gruppenraum
- 2 Nasszelle
- 3 Marktplatz
- 4 Verwaltung
- 5 Küche

KGA.CEBRA.01.PLAN KGA.CEBRA.01.001

KGA.CEBRA.02 **Lucinahaven Toulov Childcare**

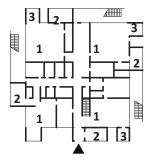
CEBRA 2007-2009 Taulov / Dänemark

- **ERDGESCHOSS**
- 10 50
- 1 Gruppenraum
- 2 Nasszelle/Garderobe
- 3 Marktplatz
- 4 Verwaltung


Der Kindergarten ist unterteilt in sechs Untereinheiten, eine jede mit Eigenem grafischen Thema.

Gemeinsam formen sie eine hexagonale Geometrie, diese stellt, von oben gesehen, ein Gänseblümchen dar. Der gelbe Mittelpunkt der Blume ist der Gemeinschaftsraum, hier kreuzen sich die Wege aller Benutzer des Gebäudes, ein lebendiges Zentrum entsteht.

In den Blüttenblättern befinden sich Betreuerräume, und sechs Gruppenräume. Zwei pro Blüttenblatt. Die Redimensionierung und Abstrahierung der formalen Sprache der Natur in Gebautem in derartig reduzierter Weise stellt eine besondere Wertschätzung der kindlichen Bedürfnisse dar.


KGA.CEBRA.02.PLAN KGA.CEBRA.02.001

OBERGESCHOSS

KGA.Kirsch **Kindergarten**

Kirsch zt GmbH 2009-2010 Wien / Österreich Holz-Stahlkonstruktion

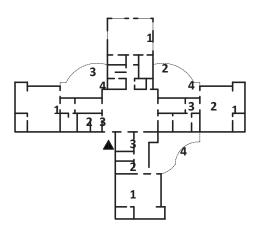
ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Bewegungsraum

In der Heterogenität seines baulichen Umfelds stellt sich der zweigeschossige Baukörper in selbstbewusster Identität dar, harmonisch fügt er sich in den angrenzenden Schulkomplex ein.

Der zentrale Teil des Kindergartens folgt dem Konzept

offener Räumlichkeit, um diesen herum sind sämtliche Nebenräume (Sanitäranlagen, Abstellräume) angeordnet. Sie sollen zwischen Innen und Außenbereich vermitteln, und "schützen denn Innenbereich zugleich vor der Außenwelt".


Zusammen mit den niveaumäßig differenzierten Spielkojen welche sich nischenartig an die Gruppenräume anhängen rhythmisieren an drei Seiten verlaufende Außenstiegen die Fassade.

KGA.Kirsch.PLAN.01 KGA.Kirsch.PLAN.02

KGA.Schütte-Lihotzky Kindergarten Rinnböckstraße

Margarete Schütte-Lihotzky 1968 Wien / Österreich Betonbau

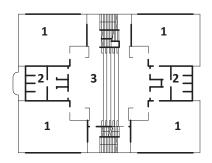
ERDGESCHOSS

0 10 50

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Terrasse

Historisch interessant ist dieser Beitrag zur typologischen Geschichte der Kindergärten.

Die Einteilung in unterschiedliche Gruppen wird hier besonders streng vollzogen, die pädagogische Idee erweist sich schon bei Betrachtung des Grundrisses als deutlich. Kreuzartig ordnen sich die vier Gruppenbereice samt Nebenräumen um den Eingangsbereich an. Die einzelnen Bereiche werden über einen zentralen Raum erschlossen, an diesem angehängt folgen Nass-


zelle und Garderobe. Die Außenbereiche der Gruppen sind voneinander getrennt. Im Sinne einer funktionalistisch und pädagogisch nüchternen Moderne gibt sich der Kindergarten als klar strukturiert.

KGA.Schütte-Lihotzky.PLAN KGA.Schütte-Lihotzky.001

KGA.Hertzberger.01 **Apollo Scholls**

Herman Hertzberger 1980 - 1983 Amsterdam / Niederlande Betonbau

OBERGESCHOSS

0 10 50

- 1 Gruppenraum
- 2 Nasszelle
- 3 Marktplatz

Zur Zeit der Errichtung dieses Gebäudes besteht in den Niederlanden per Gesetz noch die Festlegung, dass Kindergarteneinrichtungen getrennt von den Volksschulbereichen zu bestehen haben. Demzufolge war das Erdgeschoss vom Rest des

Gebäudes abgeschnitten. In diesem Projekt wurde das Prinzip der Aufteilung erstmals mithilfe einer dem antiken Amphittheater nachempfundenen Treppe in der zentralen Halle angewendet. Es entsteht eine fruchtbare Raumsituation, welche

zu verschiedensten Formen der Nutzung einlädt. Es entsteht eine starke Bindung zwischen den einzelnen Ebenen, welche alle mit der Halle verbunden sind. Der Kern des Gebäudes wird zum kommunikativen Raum und tritt als Vermittler auf.

KGA.Hertzberger.01.PLAN KGA.Hertzberger.01.001

KGA.Hertzberger.02 Montessori primary school

Herman Hertzberger 1966 Delft / Niederlande Betonbau

- **ERDGESCHOSS**
- 1 Klassenzimmer
- 2 Nasszelle
- 3 Marktplatz

Dieses Gebäude ist klar strukturiert: die niedrige Eingangshalle verbindet die zum Garten hingewandten, etwas höheren Gruppenräume. Alle Klassenräume sind an der zentralen Halle des Gebäudes orientiert, sie erstreckt sich über beide Ge-

schosse, erweist sich als Ort der Kommunikation. Gleichzeitig funktioniert sie als offener Korridor zwischen den Räumen. Die Wichtigkeit der Halle wird des weiteren durch eine permanente Bühne gesteigert. Die versetzte Anordnung der Klassenräume hat eine lebendige Innenlandschaft aus Nischen und Ecken zur Folge.

Die Klassenzimmer sind Lförmig; dies erlaubt eine differenziertere Strukturierung des Raumes in Bezug auf eine vielfältige Nutzung desselben.

KGA.Hertzberger.02.PLAN KGA.Hertzberger.02.001

ERDGESCHOSS 50

KGA.Hertzberger.03
Schule und
Kindergarten
"De Evenaar"

Herman Hertzberger 1984 - 1986 Amsterdam / Niederlande Betonbau Erweiterung

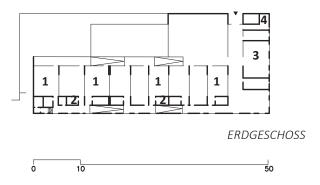
- 1 Gruppenraum
- 2 Spielraum
- 3 Marktplatz

Dieses auf einer Freifläche (welche zugleich als Spielplatz dient) im Wohngebiet stehende Gebäude gibt sich in seiner Erscheinung äußerst unabhängig: erkerartige Fensterflächen öffnen die Gruppenräume nach Außen. Der unregelmäßige Grund-

riss erzeugt ein abwechslungsreiches Fassadenbild. Im Inneren zeichnet sich der Kindergarten durch die zeitgemäße Möglichkeit der Adaptierung für verschiedene Gruppengrößen aus.

Diese Anpassbarkeit wird erreicht durch eine verschieb-

bare Wand zwischen zwei der drei Gruppenräume. Zusätzlich zur Halle, welche die Gruppenräume verbindet, besitzt dieser Entwurf einen grozügigen Bewegungsraum.



KGA.Hertzberger.03.PLAN KGA.Hertzberger.03.001

Typologie. Nord-Süd

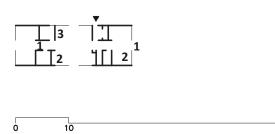
KGA.Munoz.Miranda **Educational Centre En El Chaparral**

Alejandro Munoz Miranda 2010 Granada / Spanien Betonbau

- 1 Gruppenraum
- 2 Nasszelle
- 3 Essenraum
- 4 Verwaltung

Dieser Kindergarten ist für Kinder bis zum Alter von drei Jahren entworfen, seine Fenster sind zum Teil regenbogenfarben. Alle Gruppenräume öffnen sich zum langgestreckten Innenhof, und sind linear aneinandergereiht. Die Idee des

überdachten Außenraumes als Zentrum allen Spielens und Erziehens wird durch ein durchgängiges Vordach verstärkt. In der Nutzung verschwimmt die Grenze zwischen Innen und Außen. Östlich der Gruppenräume befindet sich er Verwal-


tungsraum sowie der kleine Speisesaal. Die Korridore werden durch farbige Fenster akzentuiert, während die Fenster der Gruppenräume klar bleiben. Die Gruppenräume besitzen eine größere Raumhöhe als der Rest des Gebäudes.

KGA.Munoz.Miranda.PLAN KGA.Munoz.Miranda.001

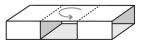
KGA.vandenBerk **Anansi Playground Building**

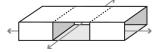
Mulders vandenBerk Architecten 2009 Utrecht / Niederlande

ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Verwaltung


Das wie ein Pavillon anmutende Gebäude teilt den Spielplatz in zwei Hälften. Die eine Seite wird von Teenagern benutzt, die andere von Kleinkindern.


Der Innenraum ist in gleichgroße Spielräume geteilt.
Das schlichte Interieur


leuchtet in hellen Farben und lädt zur Interaktion ein. Jeder der Räume öffnet sich mit einer gläsernen Wand in eine andere Richtung.

Die Innenräume stehen im engen Kontext mit den Außenräumen, nach denen Sie sich öffnen. Die Glasflächen erlauben das erleben der Natur von Innen. Das elegante Weiß an der Außenhülle des Gebäudes kontrastiert mit den farbigen Wänden in den Spielräumen, zugleich gibt es der Kubatur inmitten der Parklandschaft einen monolitischen Charakter.

KGA.vandenBerk.PLAN KGA.vandenBerk.001

KGA.vandenBerk.002

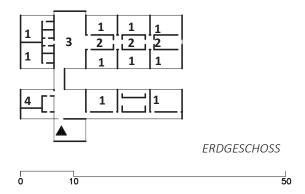
KGA.AFKS **Ajurinmäki Daycare Center**

AFKS / Frondelius + Keppo + Salmenperä 2005-2009 Espoo / Finland Holzbau

ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4. Verwaltung

Das Gebäude beherbergt drei separierte Bereiche für die Gruppen des Tageszentrums, sowie einen offenen Betreuungsbereich. Die organische Form des Gebäudes soll in der Vorstellungskraft der Kinder den Anschein eines Lebewesens


erwecken. Der Hof des Gebäudes öffnet sich nach Süden und ist von allen Gruppenräumen zugänglich. Die künstliche Landschaft, welche durch die Form des Daches geschaffen wird, ist akzentuiert durch spielerisch gestaltete Oberlichter.

KGA.AFKS.PLAN KGA.AFKS.001

KGA.RCR **Els Colors Kindergarten**

RCR Arquitectes 2002 Manlleu / Spanien Stahl- u. Betonelemente

Dieses Gebäude ist wie dadie das Ganze formen, und Ergebnis eines niemals enin der Identität jedes Eledenden Spiels bestehendnentes durch seine Farbe. aus der Aneinanderreihun Die Gruppenbereiche, Geund Überlagerung repetitimeinschaftsräume und die ver Einzelteile. Cafeteria sind in den beiden Die Einfachheit der Komrechteckigen Bereichen verposition liegt in der identiteilt. Im ersten Geschoss beschen Größe der Einzelteile indet sich der Eingang und

- 1 Gruppenraum
- 2 Garderobe
- 3 Bewegungsraum
- 4 Verwaltung

ein multifunktionell nutzbarer Bereich. Die vertikalen und horizontalen Strukturelemente kontrastieren in ihrer Materialität.

Rot, Orange bis Gelb gefärbte Glaswände erzeugen eine angenehme Athmosphäre.

KGA.RCR.PLAN KGA.RCR.001

KGA.RCR.002

KGA.AllesWirdGut **Kindergarten**

AllesWirdGut Architektur 2007 Arlberg / Österreich Betonbau

- 1 Gruppenraum
- 2 Nasszelle
- 3 Bewegungsraum

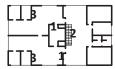
Der kompakte Gebäudeblock steht auf dem nördlichen Teil seines Grundstückes. Hier befindet sich ein Parkplatz, welcher als Vorhof verstanden werden kann. Dieser "Vorhof" erstreckt sich durch das Foyer und verläuft weiter als überdach-

ter Spielplatz bis zum Garten. Die Hauptachse, welche am Foyer beginnt, erschließt die Gruppenräume, gleichzeitig führt sie zum Bewegungsraum und zu den Sanitäreinrichtungen. Die an die Achse angrezenden Räume können mit dieser verbun-

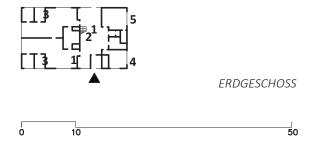
den werden. Dies bereichert den Korridor und macht ihn zu einem lebendigen Teil des Gebäudes. Alle Guppenräume sind gegen Südwesten ausgerichtet. Wandhohe Fenster verstärken den Eindruck, das Innere wäre Teil der Grünlandschaft.

KGA.AllesWirdGut.PLAN KGA.AllesWirdGut.001

KGA.AllesWirdGut.002


KGA.AllesWirdGut.003

Dieser Bau ist eine Neuinterpretation des niederländischen Farmhauses in Form, Materialität, und Konstruktion. Die bunte Fassade und das Aluminiumdach stehen im Kontrast mit dem ländlich-rustikalen Umfeld. Die Silhouette des Satteldachs verweist auf das angrenzende, bestehende Farmhaus. Der hintere Bereich des Gebäudes zeigt sich modernistisch-funktional mit einem Flachdach. Die Raumaufteilung ist bewusst einfach. Das Tageszentrum ist entlang seiner Symmetrieachse organisiert, so ist das Gebäude in drei klare Zonen unterteilt. Im vorderen Bereich befinden sich die Räumlichkeiten der Betreuer, die Mittelzone wird als Eingangs- und Spielbereich genutzt, und der hintere Teil des Gebäudes beinhaltet die Gruppenräume.


KGA.Drost+van.Veen

Day care centre de kleine Kikker

Drost +van Veen architecten 2003 De Uithof, Utrecht, Niederlande Stahlbau Erweiterung

OBERGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Verwaltung
- 5 Küche

KGA.Drost.van.Veen.PLAN.01 KGA.Drost.van.Veen.PLAN.02 KGA.Drost+van.Veen.001

KGA.Kaufmann Kinderhaus **Garching**

Hermann Kaufmann 2009-2010 München/Deutschland Holzbau

ERDGESCHOSS

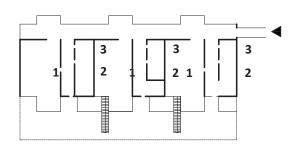
0 10 50

- Gruppenraum
- 2 Nasszelle
- 3 Bewegungsraum
- Verwaltung

Klar fügt sich dieses Gebäude in den Bestand ein, es wird Bezug genommen auf Straßenlage und Ausrichtung der Nachbargebäude. Durch die Positionierung des Gebäudes am westlichen Rand des Grundstücks bleibt der Grünzug im östlichen

Teil unberührt. Der geknickte Grundriss erzeugt auf der Westseite einen Hofbereich und auf der Ostseite geschützte Außenbereiche für die. Am zentralen Eingangsbereich sind die Funktionen Leitung, Küche und Bewegungsraum angeordnet. Alle

Gruppenräume öffnen sich nach Osten zu den Freiflächen. In den Gruppenbereichen angeordnete Galerien lassen neue Räume mit einer Raumhöhe von 1,5 m entstehen, welche als Rückzugsmöglichkeit für die Kinder funktionieren.



KGA.Kaufmann.PLAN KGA.Kaufmann.001

KGA.Kaufmann.002

KGA.Prochazka Kindertagesheim Carminweg

Elsa Prochazka 1994 Wien / Österreich

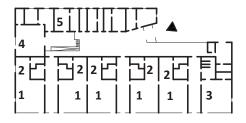
ERDGESCHOSS

0 10 50

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe

Der Entwurf stellt eine Reflexion über Heute und Gestern in der Architektur Wiens dar. Die resultierende Synthetik erweist sich als wirkungsvoll für die Eigenständigkeit des Gebäudes. Die Materialität des Innenraumes erinnert an die Wiener Moderene

a lá Josef Frank, die Raumorganisation ist klar, über einen mit Erkern rhythmisierten Korridor werden die Gruppenbereiche erschlossen. Mit der Anordnung von Erkern wird auch in den Gruppenräumen ein differenziertes Raumangebot

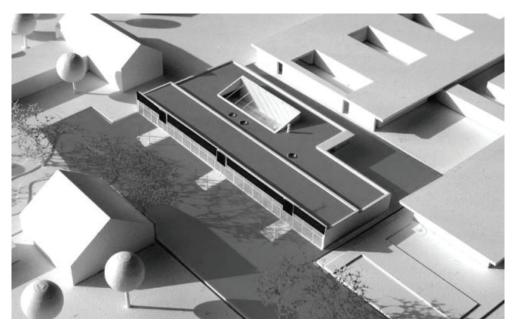

erzielt. Die Anordnung der Fenster zum Hof hin schafft ganz besonders für die Kinder interessante Sichtachsen Das aufgeständerte Obergeschoss unterstreicht die Autonomie des Kindergartens, und lässt regengeschützte Außenbereiche entstehen.

KGA.Prochazka.PLAN KGA.Prochazka.001

KGA.Reinberg **Passive Kindergarten**

Architekturburo Reinberg 2006 Wien / Österreich 6 Gruppen

ERDGESCHOSS


0 10 50

- 1 Gruppenraum
- 2 Nasszelle/Garderobe
- 3 Essensraum
- 4 Bewegungsraum
- 5 Verwaltung

Durch dieses Projekt wird eine bestehende Schule ergänzt, der Neubau bildet mit dieser ein gemeinsames Atrium.

Der zentralen Halle sind südlich die Gruppenräume vorgestellt, optimaler Sonneneintrag über großzügige Fensterflächen ist gewährleistet. Nördlich der Halle befinden sich die Verwaltungsräume. Die Haustechnik (Lüftung) wird durch die offene Leitungsführung für den Nutzer direkt erlebbar. In puristischer Weise wird das Funktionieren des Kin-

dergartens als Passivhaus offengelegt. Eine solare Warmwasseranlage und die hohe Gebäudemasse, welche in passiver Nutzung des Sonnenlichts aktiviert wird, senken den Energiebedarf zusätzlich.

KGA.Reinberg.PLAN KGA.Reinberg.001


KGA.Ripolltizon **Consell Kindergarten**

RIPOLLTIZON

2010 - project year

Mallorca / Spanien

Erweiterung des Schulkomplex "Bartomeu Ordines"

0 10 50

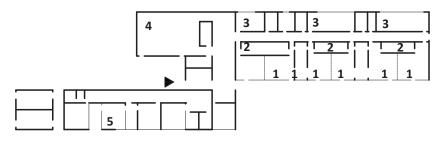
ERDGESCHOSS 1

Gruppenraum

- 2 Nasszelle
- 3 Bewegungsraum
- 4 Verwaltung

Der Entwurfsplan versucht das gesamte Gebäude mit dem Baugrund zu verschmelzen, und so eine fließende Beziehung zwischen den Innenräumen und den außenliegenden Spielplätzen zu erreichen. Zwei symmetrische Gruppenräume teilen

sich je eine Glasfassade samt Vordach und Hof, sowie den Eingangsbereich. Diese Aufteilung ist im Grundriss klar ersichtlich.


Die Glasfassade ist ostwärts orientiert, einerseits um natürliches Licht in die Gruppenbereichen zu leiten und andererseits um den visuellen Bezug zum bestehenden Schulgebäude zu vermeiden. Das Dach folgt dem Erschließungpfad in seiner Zick-Zack Route, verweist auf dessen Funktion und bietet Schatten neben den Spielplätzen.

KGA.Ripolltizon.PLAN KGA.Ripolltizon.001

KGA.Finner **Santa Isabel Kindergarten**

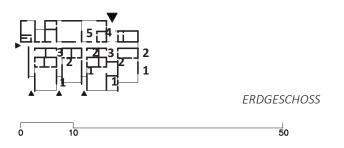
Carroquino Finner Arquitectos 2006-2007 Zaragoza / Spanien Beton und Glas

1 Gruppenraum

- 2 Nasszelle
- 3 Garderobe
- 4 Bewegungsraum
- 5 Verwaltung

Zwei Kuben mit Glasfassade beschreiben die Kubatur dieses Gebäudes. Ein Kubus beherbergt das erzieherische Programm (Gruppenräume, Schlafräume, Mehrzweckhalle), der andere beinhaltet Service und Verwaltungseinrichtungen. Der

erzieherische Kubus ist in drei Einheiten zoniert, kleine Innenhöfe sind an jede Einheit angebunden, sie dienen der räumlichen Trennung zwischen den Einheiten. Jede Einheit besteht aus zwei Gruppenräumen, zwei Gruppenräume teilen sich je eine Nasszelle und eine Garderobe. Innerhalb der Einheitenmöglichen verschiebbare Wände die Raumgröße an unterschiedliche Nutzungsformen anzupassen. Nasszelle und Schlafraum passen sich an diese Veränderungen an.



KGA.Finner .PlAN KGA.Finner.001

KGA.Finner.002

KGA.SOLID **Kindergarten**

SOLID architecture 2010 Neufeld an der Leitha / Österreich

Mit L-förmigen Gruppenbereichen werden in diesem Projekt kleine geschützte Außenbereiche erzeugt, die direkt mit dem Gruppenraum verbunden sind. Der Gruppenraum an sich ist rechteckig, wird aber durch einen Arbeitsraum zu einem

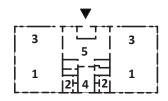
L ergänzt. Die mit runden Oberlichtern rhythmisierten Korridore sind offen und hell konstruiert.

Die Zirkulation der Nutzer verstärkt den Aspekt der Trennung der Gruppenbereiche.

Der gesamte Kindergarten

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Essensraum
- 5 Bewegungsraum

ist in seiner Maßstäblichkeit auf die Bedürfnisse von seinen primären Benutzern, den Kindern, hin entworfen. Es entstehen räumliche Situationen, welche erst aus der Perspektive der Kinder ihren wahren Wert erhalten.



KGA.SOLID.PLAN KGA.SOLID.001

KGA.SOLID.002

KGA.trans_city Kindergarten_ pavillon

trans_city – TC ZT gmbh 2013 Wien / Österreich demoprojekt

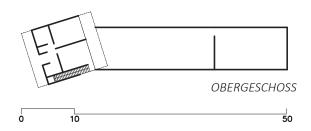
10

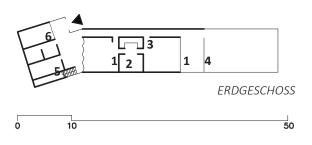
ERDGESCHOSS

50

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Küche
- 5 Marktplatz

Durch Neubauten werden an drei Stadtorten bestehende temporäre Kindergärten ersetzt. Die symmetrische Anordnung des Grundrisses entlang der Eingangsachse erzeugt zwischen den beiden Gruppenräumen die Situation eines Marktplatzes. Durch Neubauten werden an drei Stadtorten bestehende temporäre Kindergärten ersetzt. Die symmetrische Anordnung des Grundrisses entlang der Eingangsachse erzeugt zwischen den beiden Gruppenräumen die Situation eines Marktplatzes. Die drei neuen Kindergärten sind im Grundriss und ihrer statischen Struktur ident. Die architektonische Gestaltung der Außenhülle nimmt auf die städtebaulichen Anforderungen und Rahmenbedingungen des jeweiligen Standorts Rücksicht. Dach

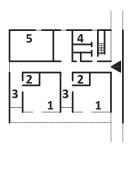



KGA.trans_city.PLAN
KGA.trans_city 001

KGA.Vilalta Arreletes Betreuungszentrum

Xavier Vilalta Studio 2007-2008 Els Alamús Spanien Holz, Stahl, Beton und Glas

Zwei Volumen strukturieren dieses Projekt: Das Eine, ein langgestreckter Kubus liegt am Boden, orientiert an den angrenzenden bewirtschafteten Feldern. Es beinhaltet die Gruppenräume für die Kinder und bildet mit einer bestehenden landwirtschaftlichen Mauer den Hof. Ein zweites Volumen sitzt auf einem Ende des ersten Kubus, mit Sichtachse in Richtung des Hofes mit Kinderspielplatz. Vom darin untergebrachten Büro wird die auf dem Dach des ersten Volumens liegende Dachterrasse erschlossen. Die beiden Volumen bieten einen unterschiedlichen Zugang zum Gebäude und sind durch ein dem Gelände angepasstes Stiegenhaus verbunden. Der sichtbar industrielle Fertigungsprozess der Bauteile gibt dem Kindergarten ein sehr nüchtern-elegantes Erscheinungsbild.


- Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Bewegungsraum
- 5 Verwaltung

KGA.Vilalta.PLAN KGA.Vilalta.001

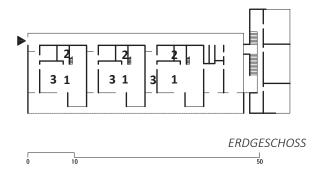
KGA.Untertrifaller.01 Kindergarten

Dietrich / Untertrifaller 2003 - 2004 Egg / Österreich Holzbau

ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- 4 Küche
- 5 Bewegungsraum

Ein Mittelgang im Erdgeschoss führt zu zwei südlich orientierten Gruppenräumen mit je eigenen Garderoben. Nördlich des Ganges befinden sich Bewegungsraum und Nebenräume. Das die Straßenansicht bestimmende Rahmenbauwerk dient als großzügiger Schattenspender für die großflächig verglasten Gruppenräume. Die tragenden Betonmauern liegen im Inneren des Gebäudes teilweise offen, die Spielräume der Kinder sind mit Birkensperrholz verkleidet.


Der kontrastierende Einsatz der Materialien strukturiert die Nutzung des Kindergartens. Das nach Osten auskragende Obergeschoss ist halb so groß wie das Erdgeschoss. Es beschirmt den Eingangsbereich und enthält einen Musikproberaum.

KGA.Untertrifaller.01.PLAN KGA.Untertrifaller.01.001

KGA.Untertrifaller.02 **Kindergarten**

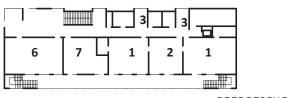
Dietrich / Untertrifaller 1998 - 1999 Lustenau / Österreich Holzbau

- 1 Gruppenraum
- 2 Nasszelle
- 3 Garderobe

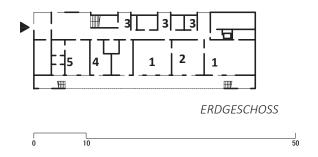
Breite Scheiben bilden den südwärts gerichteten Rahmen für den langgestreckten Gruppenraumtrakt. Durch diesen werden die Gruppenräume optisch zu einer Einheit zusammengefasst. Gleichzeitig beschattet dieser die nach Süden offenen

Gruppenräume. Der Übergang zum Garten ist durch diese Pufferzone gegliedert. Die Gruppenräume sind in sich räumlich strukturiert und enthalten je eine eigene Garderobe. Im Osten des Traktes setzt ein zweigeschossiger Bau an. In die-

sem befindet sich der teils in die Erde versenkte Turnsaal und darüber die Kinderküche und der Werkraum. Das Spiel mit Proportion und Raumhöhe welches das Bauwerk kennzeichnet soll die Wahrnehmung der Kinder spielerisch schulen.

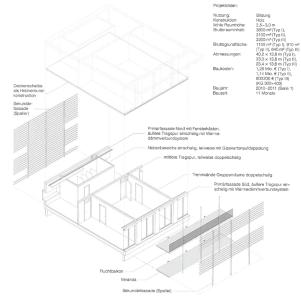


KGA.Untertrifaller.02.PLAN KGA.Untertrifaller.02.001


KGA.Schulz Kindertageseinrichtungen

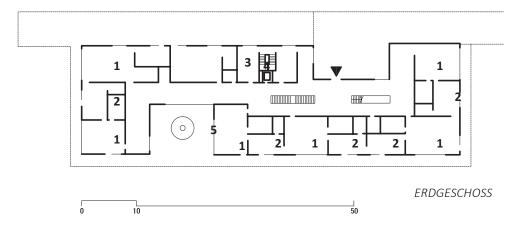
Schulz&Schulz 2010 -2011 München / Deutschland Holzbau

Die bewusste Beschränkung auf ein Minimum an sich wiederholender Details, die Elementierung der vorgefertigten Komponenten und die Reduktion der Baustoffe sind Kennzeichen der Systembauweise wie sie in diesem Projekt angewendet wird. Die Optimierung der ökonomischen Komponente geht einher mit einer klaren Anordnung des Grundrisses. Das Eine ergibt sich gleicher Maßen aus dem Anderen, wobei hier die gestalterische Konsequenz der tragende Punkt ist, welcher die Nutzungsqualität dieses Gebäudes ausmacht. Der zweigeschossige Kindergarten ist linear organisiert, die Gruppenräume sind nach Süden ausgerichtet. Ein weiterer Kernpunkt der Planung ist die energetische Optimierung, dieser ist die kompakte Außenhülle geschuldet.



OBERGESCHOSS

- 1 Gruppenraum
- 2 Multifunktionsraum
- 3 Spielnishe
- 4 Verwaltung
- 5 Küche
- 6 Mehrzweckraum
- 7 Personalraum



KGA.Schulz.PLAN KGA.Schulz.001 KGA.Schulz.002

KGA.Hirner&Riehl **Kinderhaus**

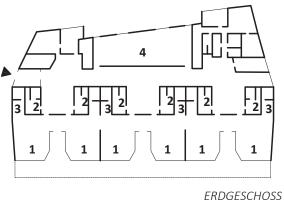
Hirner & Riehl architekten 2011 Unterföhring / Deutschland Holzbau

- 1 Gruppenraum
- 2 Ruheraum
- 3 Mehrzweckraum
- 4 Verwaltung

Unbehandelte Holzoberflächen und rote, quadratische Sonnensegel rhythmisieren die Fassade dieses aus Brettsperrholz und Hohlkastenelementen konstruierten Gebäudes.

Die Sonnensegel dienen als verbindendes Element

zwischen Innen- und Außenraum. Zwei Höfe sind in den rechteckigen Grundriss eingeschnitten, der eine verweist auf den Eingang, der andere ist Gartenhof. Beide belichten sie den zentralen Erschließungsbereich im Gebäude. Dieser dient als War-


tebereich für die Eltern, als Garderobe und gleichzeit als gemeinsame Spielfläche. Die kommunikative Komponente des verbindenden Weges wird verstärkt. In seinen zehn Gruppenräumen fasst der Kindergarten bis zu 250 Kinder.

KGA.Hirner&Riehl.PLAN KGA.Hirner&Riehl.001

KGA.Fasch&Fuchs Kindergarten Wolkersdorf

Fasch&Fuchs.architekten 2010 Wolkersdorf / Österreich Holz/Betonbau

- 1 Gruppenraum
- 2 Nassezelle
- 3 Garderobe
- 4 Bewegungsraum

ERDGESCHO

Durch die Positionierung des Gebäudes an der südöstlichen Seite des Grundstücks entsteht nordwestlich ein Vorplatz, von welchem der gesamte Kindergarten ersichtlich ist.

Der lichtdurchflutete Bau ermöglicht in seiner klaren

Struktur eine einfache Orientierung. Der Windfang führt in ein langgezogenes Foyer, von wo aus sämtliche Gruppenräume erschlossen werden können. Der nördlich gelegene Bewegungsraum ist nur durch eine mobile Trennwand vom Foyer

getrennt, lässt sich also mit diesem verbinden, sodass ausreichend Platz für Kindergartenfeste und andere Veranstaltungen entsteht. Des weiteren steht der Bewegungsraum mit einer großen Freifläche in Verbindung.

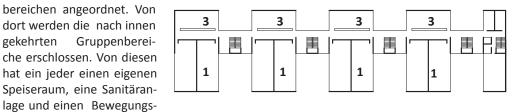
KGA.Fasch&Fuchs.PLAN KGA.Fasch&Fuchs.001

Typologie. Separate Eingänge

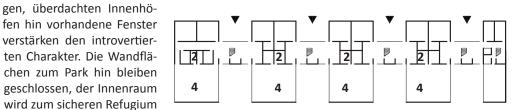
gekehrten

raum.

Nur zu den zweigeschossi-


vor der Außenwelt.

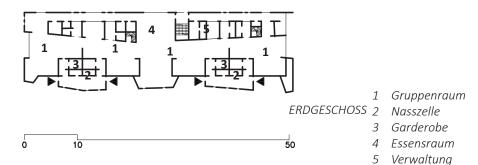
gang zum Garten möglich,


welcher sich in den Innen-

KGA.ABCG **Kindergarten** Multi Purpose Hall

Entlang seiner Hauptachse ABCG Architettura & entwickelt sich dieser Kin-Lopesbrenna Architetti dergarten in Abfolge sich 2011 wiederholender Elemente. Lugano / Schweiz Die Eingangsbereiche, Gar-Holzbau deroben und Stiegen sind zwischen je zwei Gruppen-

OBERGESCHOSS


- Gruppenraum
- 2 Nasszelle
- 3 Garderobe
- Bewegungsraum

KGA.ABCG.PLAN.01 KGA.ABCG.PLAN.02 KGA.ABCG.001

KGA.Ramstad **Fagerborg Kindergarden**

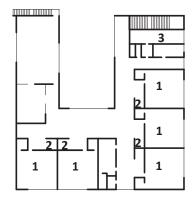
Reiulf Ramstad Architects 2003-2010 Oslo / Norwegen Holzbau

Dieser Entwurf bietet zwei Einheiten für Kinder zwischen einem und drei Jahren und zwei weitere Einheiten für Kinder zwischen dem dritten und sechsten Lebensjahr.

Diese vier Einheiten funktionieren zusammen oder

getrennt, je nach Bedarf. Die Geometrie des Gebäudes ist den Nutzungsanforderungen angepasst. Jeder der Gruppenräume hat einen eigenen Eingang, der wie eine Höhle inszeniert ist. Während sich in der Mitte des Gebäudes ein Gemein-

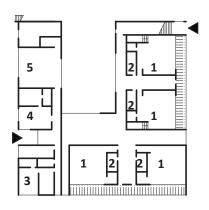
schaftsraum mit Küche befindet, liegen in den oberen Geschossen, die sich wie der Kopf eines stark abstrahierten Tierkörpers vom Boden abheben, die Büros der Verwaltung und die Räume der Erzieherinnen.


KGA.Ramstad.PLAN KGA.Ramstad.001

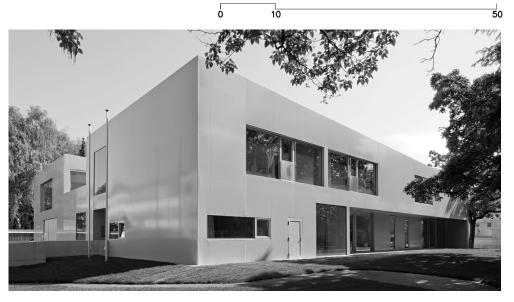
Typologie. Atrium

Der Grundriss dieses zweigeschossigen Gebäudes ist U-förmig, es entsteht ein geschützter Innenhof. Der Kindergarten befindet sich im Erdgeschoss.

Im Obergeschoss ist, das sich dort befindliche, Nachmittagsbetreuungszentrum auf bis zu acht Klassen erweiterbar. Der zentrale Hof ist in seiner Funktion nicht determiniert, kann sowohl als Lernfläche oder Spielplatz verwendet werden. Gemeinsam mit den Loggien vor den Gruppenräumen stellt er einen wesentlichen Teil des räumlichen Konzepts dar, welches von einer Offenheit der Freiflächen ausgeht.


Die Abfolge aus offenen und geschlossenen Räumen birgt ein vielfältiges Nutzungserlebnis.

KGA.Zahn Kindergarten and after-school Care Center


Alexa Zahn architects 2009 Linz / Österreich Betonbau

OBERGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle/Garderobe
- 3 Essensraum
- 4 Verwaltung
- 5 Sportplatz

ERDGESCHOSS

KGA.Zahn.PLAN KGA.Zahn.001

KGA.Minimalstudio Modular Kindergarten

Minimalstudio Architects Projektentwurf (nicht gebaut) Stahlbau

- 1 Gruppenraum
- 2 Nasszelle

50

- 3 Garderobe
- 4 Verwaltung

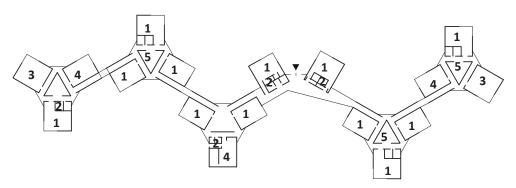
KGA.Minimalstudio.PLAN KGA.Minimalstudio.001

Dieser Kindergarten ist als modulares Gebäude mit Flachdach entworfen. Hauptelemente der Konstruktion sind drei Arten von Containern.

Der Kindergarten besteht aus einem Hauptgebäude, an welches variable Module "angedockt" werden können. Das Hauptgebäude beinhaltet die Eingangshalle und sämtliche Technische Einrichtungen sowie die Verwaltung.

Jedes der variablen Module besteht aus sieben einzelnen Containern welche Platz für Gruppenraum, Stauraum und Sanitäranlagen bieten.
Die Standardkonfiguration sind vier variable Module und ein Hauptgebäude.

45 steel containers 605.5 x 243.5 x 279 cm 9 steel containers 488.5 x 243.5 x 279 cm 4 steel containers 733.5 x


KGA.Minimalstudio.002

KGA.Minimalstudio.003

KGA.Mazzanti **Timayui Kindergarten**

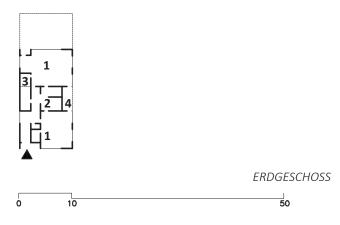
Equipo de Mazzanti 2011 Santa Marta, Kolumbien Beton

ERDGESCHOSS

- 1 Gruppenraum
- 2 Nasszelle
- 3 Bewegungsraum
- 4 Essensraum
- 5 Innengarten

Die Form dieses Kindergartens nimmt ein Symbol die Blume aus seiner Umgebung auf und abstrahiert in monumentaler Weise. Drei modulare Bausteine bilden in ihrer Anordnung einen dreieckigen, offenen Innenhof. Diese drei Module bilden eine

Einheit welche sich mit weiteren Einheiten verbinden lässt. Jedes Standardmodul enthält zwei Gruppenräume und Sanitäranlagen, die Module können als Speisesaal und Küche adaptiert werden. Die Innenräume geben sich bewusst zurückhaltend


sind in ihrer Nutzung nicht determiniert. Zugleich stehen sie in enger Verbindung zum Außenraum, der sich einmal als geschützer Innenhof, dann als offene Fläche gibt. Tragende Wände entbehren jegliche Säulen im Innenraum.

KGA.Mazzanti.PLAN KGA.Mazzanti.001

KGA.Uchida **T-Nursery**

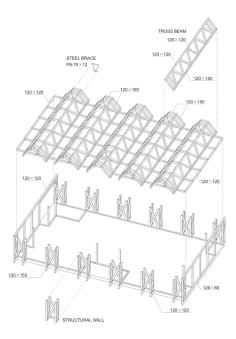
Uchida Architect Design Office 2012 Fukuoka / Japan Holzbau Erweiterung für 2 Klassen

- 1 Gruppenraum
- 2 Nasszelle
- 3 Verwaltung
- 4 Terrase

Gefaltene Fachwerkträger ermöglichen den säulenfreien Innenraum dieses Projekts. Als tragende Wände fungieren rein jene, welche den Abschluss nach Außen bilden.

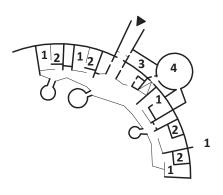
Der Innenraum kann unabhängig von der Tragstruktur

organisiert werden, oder als ein großer Raum genutzt werden. Die Fachwerkträger werden im Werk vorgefertigt, und per Lastwagen zum Bauplatz gebracht.


So werden Bauzeit und Qualität der Konstruktion optimiert.

KGA.Uchida.PLAN KGA.Uchida.001

KGA.Uchida.002



KGA.Uchida.003

Typologie. Holzbau

KGA.Toyo Public Kindergarten in Eckenheim

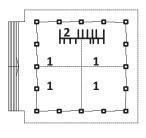
Toyo Ito & Associates,Architects 1980 - 1983 Frankfurt / Deutschland Stahlbeton / Holzrahmenbau

ERDGESCHOSS

0 10 50

- 1 Gruppenraum
- 2 Bewegungsraum
- 3 Küche
- 4 Mehrzweckraum

Die gekrümmte Kubatur dieses Kindergarten schiebt sich hinein in eine künstliche Böschung, generiert nach Süden gewandte offene Bereiche, die von dem überstehenden, gefalteten Dach beschattet werden. Über den Hang führt der Weg


zum Eingang. Das Gebäude passt sich der umgebenden Topographie an, ist sorgsam darin eingefügt. Der Kindergarten ist Ort der Ruhe. In einem urbanen Umfeld wird versucht dem Lärm der Stadt den Rücken zuzukehren.

KGA.Toyo.PLAN KGA.Toyo.001

KGA.Tezuka.01 Asahi Kindergarten

Tezuka Architects 2012 Hiroshima / Japan Holzbau

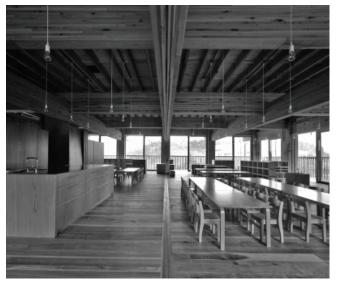
ERDGESCHOSS

die Struktur des Kiyomizu Tempel in Kyoto neu interpretiert.

die traditionelle japanische ruktion erfahrbar. Bauweise in Holz. Als Baumaterial ist ein 200 Jahre alter Zedernbaum verwen-

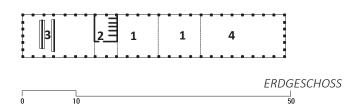
In diesem Kindergarten wird det worden, der durch einen Tsunami schwer beschädigt, als wertlos galt. Die Materialität des Bauwerks ist in Der Entwurf ist Antwort auf seiner frei sichtbaren Konst-

> Der im Grundriss quadratische Kindergarten beinhaltet vier Gruppenräume


und eine zentrale Nasszelle. Das Gebäude ist nach allen Seiten hin geöffnet, in seiner starken Horizontalität schmiegt es sich in die umgebende Natur.

KGA.Tezuka.01.PLAN KGA.Tezuka.01.001

KGA.Tezuka.01.002



KGA.Tezuka.01.003

- 1 Gruppenraum
- 2 Nasszelle

KGA.Tezuka.02 Santa Isabel Kindergarten

Tezuka Architects 2012 Hiroshima / Japan Holzbau

körper besteht aus einem großen stützenfreien In-Gruppenräume einen Bewegungsraum und eine Küche unterteilt ist.

Die frei über die gesamte Breite des Grundrisses tra-

Dieser langgezogene Bau- gende Konstruktion stellt sich mit ihren Stützen als elementares gestalterisches nenraum welcher in zwei Element dar. Auf einem dreistufigen Podest stehend trägt sie das weit ausladende Dach. Zwischen den Stützen befinden sich ringsum das Bauwerk verschiebbare

- Gruppenraum
- 2 Nasszelle
- 3 Küche
- 4 Bewegungsraum

Glaselemente. Der lichtdruchflutete Innenraum ist sorgsam mit reduziertem Interieur bestückt. Eine umlaufende Holzterrasse erweitert diesen nach außen.

KGA.Tezuka.02.PLAN KGA.Tezuka.02.001

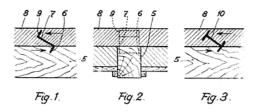
KGA.Tezuka.02.002

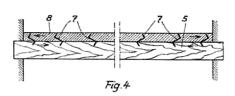
Holz-Beton-Verbund

eine Holz-Hybrid-Bauweise

HBV.000

Folgende Übersicht hat ihren Schwerpunkt auf Holz-Beton-Rippenkonstruktionen. Dort, wo keine spezifischen Angaben zu diesem speziellen Sub-System des Holz-Beton-Verbundes ausgemacht werden konnten bzw. wo Angaben allgemeingültig für diese Systeme sind, sind diese allgemeinen Angaben zu Holz-Beton-Verbundsystemen verwendet.


Einführung


Die Verbundbauweise im Holzbau geht zurück bis in die Zeit der Römer, wo man bereits versuchte, aus mehreren Querschnittteilen zusammengesetzte Verbundelemente herzustellen. In Venedig kommt seit Jahrhunderten eine Art Holz-Beton-Verbund-Deckenkonstruktion zum Einsatz, bei der aufgrund mangelnden Schubverbundes die Holzbalken dicht verlegt wurden. In den Tropen werden Holz-Beton-Verbundkonstruktionen insofern eingesetzt,

als Bambus als "Ersatz" für Stahlbewehrung zum Einsatz kommt. Die wahrscheinlich ersten ernsthaften Überlegungen in unserem Kulturraum, die Baustoffe Holz und Beton als gemeinsame kraftübertragende Verbindung zu kombinieren, datieren in die 1920er Jahre. Zur Zeit des zweiten Weltkrieges vermutlich mit dem Hintergrund der Einsparung knapper Ressourcen - wurde in Richtung alternativer Tragkonstruktionen geforscht.

HBV.001
Bambus Armierung
,pumcrete' Dach
Sumber ari Eco Villen, Bali

HBV.002 Otto Schaub ,1939 Patent zu Verbunddecken aus Holzrippen und einer Deckschicht aus Beton: Z-Profile bzw. I-Profile aus Stahl als Schubverbinder

Zur Sanierung von Bestandsdecken wurde die Bauweise seit dem Jahre 1960 (Bratislava) angewandt. In den 1970er Jahren begann die Forschung zur Entwicklung neuer Verbindungsmittel für den Holz-Beton-Verbundbau zunächst außerhalb Europas. Aktuell finden Holz-Beton-Verbundsystemen zunehmend Einsatz in der Entwicklung vielgeschossiger städtischer Wohnproto-

typen in Holz-Hybrid-Bauweise.

Die Vorzüge und günstigen Eigenschaften der beiden Baustoffe Holz und Beton ergänzen sich im Verbund hinsichtlich Steifigkeit, Tragfähigkeit und Konstruktionsgewicht und erfüllen bei richtiger konstruktiver Auslegung andere wichtige Anforderungen wie Brandund Schallschutz. Eine stete Weiterentwicklung von

Werkstoffen und Klebetechniken ermöglicht neue Optionen auch für dessen Hybridkombinationen.

Holz-Beton findet sich aber auch in einer engeren Verbindung, nämlich als Mischung aus Holz und mineralischen Baustoffen, wie z.B. Holz-Zement-Estrich wie er in der gründerzeitlichen Bebauung gerne zum Einsatz kam, der Holz-Beton-Baustein als Man-

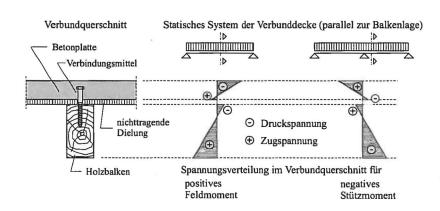
telbaustein, die zementgebundene Spanplatten oder die magnesitgebundene Holzwolle-Bauplatte. Holz-(leicht)-Betonelemente aus Holzspänen, Zement und Wasser finden Einsatz als Schallschutzwände an österreichischen Autobahnen. Möglichkeiten für die Fassadenanwendung wurden an der TU-München entwickelt (2004).

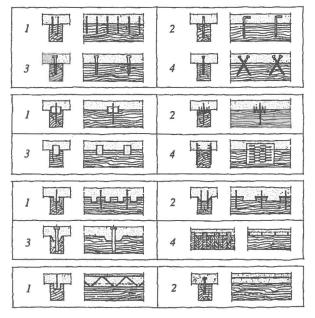
HBV.003
Aussenwandkonstruktionen mit Holzleichtbeton links:
Brettschichtholz-Holzleichtbeton mitte:
Brettschichtholz-Dämmung-Holzleichtbeton rechts:
Brettschichtholz-Holzleichtbeton-TWDin Form von

Polycarbonatplatten

Ein Ausblick in die Zukunft läßt die Auflösung hierarchischer Modularisierungen und Standardisierungen erahnen. Zunehmende Digitalisierung forciert zunehmende Dynamisierung hinsichtlich Komplexität, Variabilität und Funktionalität in der Architektur. Zunehmende Standardisierung opponiert zunehmende Individualisierung - ein spannungsvolle Widerpart – lassen wir uns überraschen was dies für Holz-Hybrid-Konstruktionen bringen wird!

Eigenschaften


Der Einsatz von Holz-Beton- Im Neubau kommen einer-Verbundsystemen erfolgte seits Massivholzdecken zum zu Ende des letzten Jahrtausends hauptsächlich in Form Aufbeton ergänzt werden, der Ergänzung bestehender Holzbalken zu sogenannten Plattenbalkenquerschnitten den Holzträgern schubfest bei der Ertüchtigung beste- (zu einem Rippensystem) hender Holzbalkendecken. verbunden.

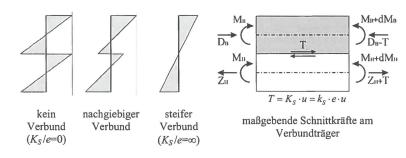

Einsatz, die durch einen andererseits werden dünne Betonplatten an anliegen-

Charakteristika und Vorteile von Holz-Beton-Verbunddecken:

- Deckenelemente mit sehr hohem Vorfertigungsgrad, große Gestaltungsvielfalt der Oberflächen, kurze Bauzeiten, da Rohbau der Decke = Ausbau der Decke
- große Spannweiten infolge günstiger statischer Eigenschaften bei niedrigem Gewicht (geringeres Eigengewicht im Vergleich zu massiven Stahlbetondecken) freie Raumgestaltung durch freie Deckenspannweiten (bis 15 m)
- Wirtschaftlichkeit aufgrund automatisierte Teilvorfertigung, den geringen Transportund Montageaufwand im Vergleich zu Deckensystemen aus Stahlbeton oder reinen Holzdecken bei vergleichbarem Ausführungsniveau
- Vielseitigkeit bei statischen Systemansätzen (Einfeldsysteme, Mehrfeldsysteme, Kragarmsysteme)
- gute bauphysikalische Eigenschaften in Bezug auf Brandschutz (hohe Brandwiderstandsdauer sowie die weitgehende Rauchgas- und Löschwasserdichtigkeit), Luftschall- und Trittschallschutz (guten akustischen Eigenschaften im Vergleich zu Holzbalkendecken), Schwingungsverhalten (geringe Schwingungsanfälligkeit):
- hohe Systemsteifigkeit und -festigkeit durch integrierten Beton, große Steifigkeit bei geringer Bauhöhe im Vergleich zu reinen Holzbalkendecken,
- hohe Biegesteifigkeit mit nur geringen Deckenverformungen, Aussteifungsfunktionen der Betonplatte (Scheibenwirkung)
- optimales Ausnutzen der spezifischen Werkstoffeigenschaften
- Sicherheit im Bruchzustand durch duktile Verbindungsmittel

HBV.004 Spannungsverteilung Holz-Beton-Verbundquerschnitte bei positiven und negativen Biegemomenten

HBV.005 Gängige Verbindungsmittel Holz-Beton-Verbundkonstruktionen


- 1) Nägel
- 2) Stabdübel aus Betonstahl
- 3) Holzschrauben
- 4) Spezialschrauben
- 1) Einlaßdübel
- 2) Einpreßdübel
- 3) Stahlrohrstücke
- 4) Nagelplatten
- vorgebohrte Vertiefungen mit Verbindungsmittel gegen Abheben
- viereckige Vertiefungen mit Verbindungsmittel
- 3) Kerven mit vorgespannten Stahlstäben
- Brettstapeldecke mit stählernen Scherplatten
- 1) Fachwerk mit Stahlstäben mit dem Holzträger verleimt
- 2) Holzträger mit eingeleimten Stahlblech

Überblick Ausführungsvarianten bzw. Verbindungsmittel

Bei Holz-Verbundkonstruktionen wird zwischen starren (unnachgiebigen) und mechanischen (nachgiebigen) Verbindungen unterschieden, wobei letztere in Verbindungen mit und ohne Formschluss unterteilt wer-

den; Diese Unterscheidung ist wesentlich für die Wahl der Berechnungsart.

Über diese 'klassischen' Verbindungsmittel hinaus findet augenblicklich eine rege Forschungstätigkeit hinsichtlich des Holz-Beton-Verbundes statt. Zum Beispiel wird der Holz-Beton-Klebeverbund parallel an mehreren Universitäten erforscht.

HBV.006 Spannungsverteilung und maßgebende Schnittkräfte im Verbundträger

Verbindungsmitte	el	Arbeitsaufwand	Wirkungsgrad	
Nägel		gering	niedrig, da Steifigkeit gering	
Holzschrauben	Durchmesser ≤ 5 mm	gering	niedrig, da Steifigkeit gering	
Durchmesser > 5 mm		mittelmäßig, Vorbohren erforderlich	hoch, abhängig vom Durchmesser	
eingeklebte Gewi	indestangen	hoch, Vorbohren und Klebung erforderlich	hoch, abhängig vom Durchmesser	
Kombination von Gewindestange/F		sehr hoch, Herstellen der Betonnocke durch Einfräsen oder Einsägen	sehr hoch	
Verbindungs-	einseitig geneigt	hoch, Vorbohren erforderlich.	hoch	Bewertung gängiger Ver-
mittel geneigt	alternierend geneigt	kontrollierter Einbau (Neigung)	sehr hoch	→bindungsmittel hinsichtlich Arbeitsaufwand und Wir- →tunasarad

Gebrauchstauglichkeit

Bei Decken in Holz-Beton-Verbundkonstruktion wird der Nachweis der Gebrauchstauglichkeit oft maßgebend für die Dimensionierung. Die Ursache dafür liegt in der Nachgiebigkeit der Konstruktion trotz hoher Tragfähigkeit. Die

Durchbiegungen im Vergleich zur Spannweite sind meist im erlaubten Bereich, aber die kleinste Eigenfrequenz ist oft zu gering, bzw. die absolute Durchbiegung unter ständiger Last zu groß. Der Nachweis der Gebrauchstauglichkeit, was die Verformungen und Schwingungen betrifft, sollte in den Unterlagen für ein Bauwerk enthalten sein, die getroffenen Annahmen - und die daraus folgenden Wirkungen - mit dem Bauherrn vereinbart werden.

Wirtschaftlichkeit

Kriterien der Wirtschaftlichkeit im Vergleich zu anderen in Frage kommenden Bauweisen sind Materialeinsatz und – kosten sowie der Arbeitszeitaufwand. Hinsichtlich der Materialwahl sind in der Regel die Anforderungen aus den

Grenzzuständen der Gebrauchstauglichkeit gegenüber denjenigen des Grenzzustanden der Tragfähigkeit maßgebend.

Schallschutz

Hier spielt der Anteil des Holzes eine untergeordnete Rolle (und wird daher sogar in der Berechnung vernachlässigt). Beton weist ein signifikant höheres spezifisches Gewicht auf, welches für das Schalldämmmaß maßgeblich ist. Die Ausführungsqualität ist ein entscheidender Faktor für die tatsächlich zu erreichenden Werte.

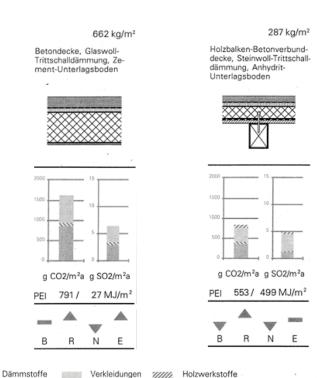
Schwimmend verlegte schwere Trockenestrichelemente auf Faserdämmstoff sowie schwimmende Estriche bzw. schwimmende Gussasphaltestriche als Fußbodenaufbau sind geeignet, die Schallschutzanforderungen einer Deckenkonstruktion zu erfüllen. Eine Unterdecke, wie sie bei Holzbalkendecken erforderlich ist, kann entfallen. Die höhere Biegesteifigkeit der Verbunddecke wirkt sich positiv auf dessen Schwingungsverhalten aus.

Brandschutz

Die Beurteilung von Holz-Beton-Verbundwänden und -decken bezüglich der Tragfähigkeit und meist auch des Raumabschlusses im Brandfall ist unproblematisch. Es kann je nach Dimensionierung der Holzbauteile eine Feuerwiderstandsdauer von weit mehr als 90 Minuten erreicht werden. Da wesentliche Bauteile aus brennbaren Materialien bestehen (Holz) ist jedoch auf die jeweils geltenden Normen und Gesetze Rücksicht zu nehmen und gegebenenfalls ein Brandschutzkonzept zu erstellen.

Legende:

ungünstig


Massivbaustoffe

mittel ___ günstig moyen favorable B = Bauprozess

Nachhaltigkeit

Es ist komplex, Werkstoffe miteinander zu vergleichen und daraus dann eine Entscheidung für den Einsatz eines bestimmten Werkstoffes zu tätigen – insbesondere der Aspekt der Nachhaltigkeit muss unter der Prämisse der Funktion verhandelt werden.

Im Vergleich zu herkömmlichen Konstruktionen kann Holz in Kombination mit schweren Baustoffen eine wesentliche Verbesserung hinsichtlich des Ökoindizes erreicht werden.

R = Relevante Bestandteile

Composants déterminants

HBV.008 Vergleich Betondecke Holz-Beton-Verbunddecke PEI Primärenergiebedarf

E = Entsorgung

N = Nutzuna

Holz-Beton: Kriterien der Materialwahl beim Verbund

Das Tragverhalten von Holz-Beton-Verbunddecken wird durch die Materialeigenschaften der Betonplatte und der Holzbalken sowie durch die Effizienz des Verbundes zwischen diesen beiden Querschnittsteilen bestimmt.

Eine Vielzahl an neuen Holzwerkstoffen und große Fortschritte in der Weiterentwicklung der Betontechnologie machen es möglich, aus einer Vielzahl an Werkstoffen die richtige Materialkombination zu finden. Auch Beton kann ganz gezielt mit Eigenschaften hergestellt werden, die sich aus dem konkreten Einsatzzweck ergeben.

entwurfsrelevante Aufgaben der einzelnen Materialien

Die Betonplatte hat primär die Aufgabe, die in der Spannrichtung der Holzbalken aus Biegemomenten und Querkräften auftretenden Beanspruchungen anteilig innerhalb des Verbundquerschnittes aufzunehmen. In Einfeldsystemen wird die Betonplatte auf Druck beansprucht.

Durch die gezielte Anwendung von innovativen Werkstoffen im Holz-Beton-Verbundbau eröffnen sich neue Möglichkeiten für diese Bauweise. Folgend die wichtigsten Kriterien zur Materialwahl:

mineralische Baufstoffe

übliche Werkstoffe für den Verbund:

- Selbstverdichtender Beton SVB
 - (Vorteile bei der Verbundherstellung; Wahl der Verbindungsmittel muss angepasst werden)
- Selbstverdichtender Leichtbeton SVLB

(Nachteile im Brandschutz gegenüber SVB)

Stahlfaserbeton

(Reduktion der Plattendicke aufgrund Entfall von Bewehrungsmatten und deren Überdeckung)

Konstruktiver Leichtbeton

(genaue Kenntnis des Feuchtigkeithaushaltes des Leichtbetons notwendig)

Ultrahochfester Beton

(dauerhaft, geringe Betondicke und Gewicht, hohe Kosten)

Polymerbeton

(hohe Druckfestigkeit, hohe Haftfestigkeit zu Holz: keine Verdübelung notwendig)

• Calciumsulfat Estriche

(geringeres Schwind- und Kriechverhalten als Beton, bessere Verarbeitung, geringere Festigkeit)

Die erforderliche Dicke der Betondeckschicht beträgt mindestens 60 mm bzw. 70 mm für eingeklebte Lochbleche. Aus statischer Sicht ist in der Regel keine Zusatzbewehrung erforderlich. Ab Plattenstärken von 100 mm sind in Abhängigkeit der Verbinder Schubbewehrungen anzuordnen. Generell ist eine Schwindbewehrung vorzusehen.

Holz – übliche Werkstoffe für den Verbund:

- Vollholzbauteile (min. Sortierklasse S10), Konstruktionsvollholz u. dgl.
- Brettschichtholzbauteile sowie daraus gewonnene Bauprodukte wie Brettstapel- oder Brettsperrholzelemente etc. (Unterschiedliche Steifigkeitseigenschaften sind bei der Bemessung zu berücksichtigen)
- Furnierschichtholz

Referenzbeispiele

REF.grundstein **ASO4**

grundstein ARCHITEKTUR 2007/10 Linz / Österreich Holzbau

REF.bauchplan **gemini+**

AL1 bauchplan Landschaftsarchitektur und -urbanismus grundstein ARCHITEKTUR 2009/11 Weissenbach / Österreich Holz-Hybrid-Bauweise

Transport

Transporte in Österreich

Broschüre "Sondertransporte in Österreich", WKO Stand: Jänner 2009

TRANSPORTBEGLEITUNG Bundesstraßen				
	Stufe 1 Eigen- begleitung	Stufe 2 vereidigte Begleitor- gane	Stufe 3 2 beeidete Straßenauf- sichtsorgane mit 2 Fahr- zeugen	Stufe 4 mehrere vereidigte + Eigenbegleitung (mind. 3 Fahrzeuge)
Breite	3,01-3,5m	3,51-4,5m		ab 5,01m
		verschärfte Stufe ab 4,51 m: 2 STAO + Fzg.		
Höhe		ab 4,31m		
Länge	22,01-25m	25,01-40m	ab 40,01m	
Gewicht individuell, je nach Gewicht, Achslast und Vorgabe des Gutachtens der Straßenverwaltung (Brückensachverständigen)				

Diese Tabelle geht von einer voll ausgebauten Straße ohne Gegenverkehrsbereiche, Baustellen und Tunnel aus.

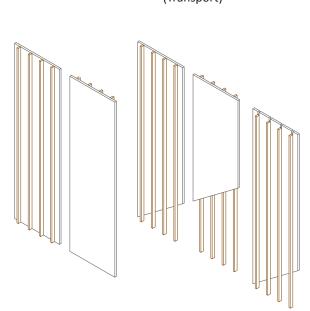
Sonstige Straßen				
Breite	3,01-3,5m 3,51-4m 4,01-4,5m		ab 4,51m	
Höhe		4,21-4,50m	ab 4,51m	
Länge	22,01-25m	25,01-30m	30,01-40m	ab 40,01m

Gewicht	individuell, je nach Gewicht, Achslast und Vorgabe des Gutachtens der
	Straßenverwaltung

WKO.001

Elementierung

Entwicklung

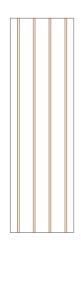

Wandelemente

Entwicklung

0028.0 **Wandelement vertikal**

Kommentar:

Standardwandelement
Betonscheibe links bzw.
rechts
bei hohen Wandöffnungen
sind Schwellen vorzusehen
(Transport)



0028.0 Wandelement mit einseitig konischen Holzträgern

- + Einsatz als architektonisches Gestaltungselement
- erhöhter Materialverbrauch

Kommentar:

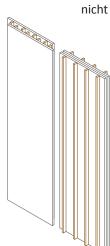
kommt im finalen Entwurf nicht zum Einsatz

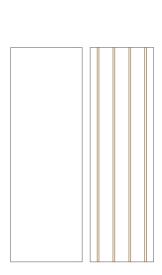
0028.0 **Wandelement rund**

- **→** Einsatz als architektonisches Gestaltungselement
- → Wiederverwendung der Schalung
- Produktionsauwand

Kommentar:

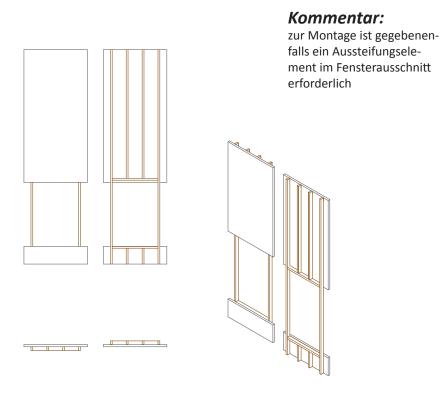
kommt im finalen Entwurf nicht zum Einsatz



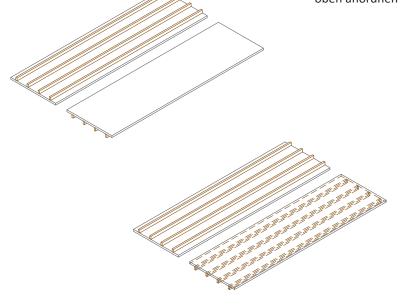

0028.0 **Doppelschalige Konstruktion**

- **→** Schallschutz
- **→** Brandschutz
- Materialverbrauch

Kommentar:


kommt im finalen Entwurf nicht zum Einsatz

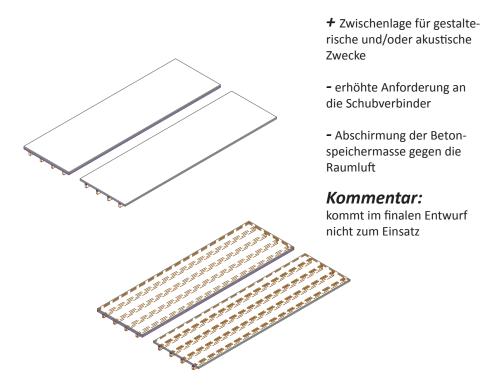
0028.0 **Parapethelement**

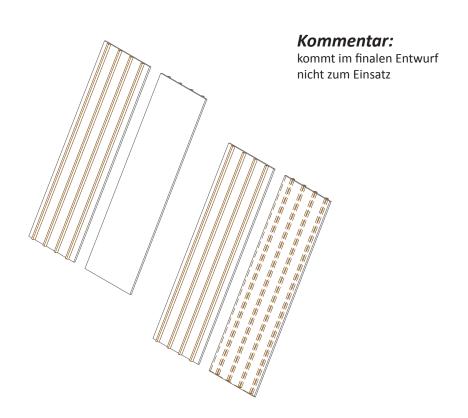

Decken- bzw. Dachelemente

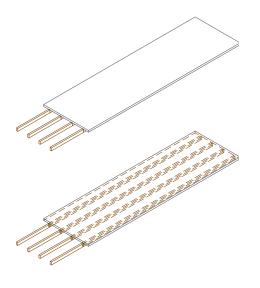
Entwicklung


0028.0 Deckenelement Flachdachelement

Kommentar:

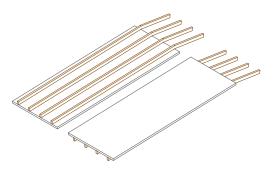

Standardelement; Betonscheibe im Normalfall oben anordnen

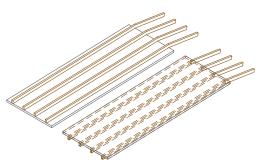

0028.0
Element aus Betonteilelementen


0028.0 Element mit Zwischenlage

0028.0 **Schrägdachelement**

0028.0 **Oberlichtelement** #1

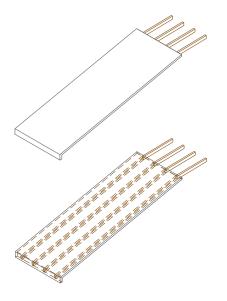



- **→** Einsatz als architektonisches Gestaltungselement
- Auflösung der Verbundwirkung ist insbesondere im Auflagerbereich (Übertragung der Querkraft) problematisch

Kommentar:

kommt daher im finalen Entwurf nicht zum Einsatz

0028.0 **Oberlichtelement** #3

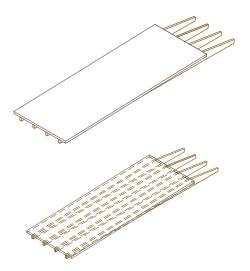


- → Einsatz als architektonisches Gestaltungselement
- Auflösung der Verbundwirkung ist insbesondere im Auflagerbereich (Übertragung der Querkraft) problematisch

Kommentar:

kommt daher im finalen Entwurf nicht zum Einsatz

0028.0 **Oberlichtelement** #**2**

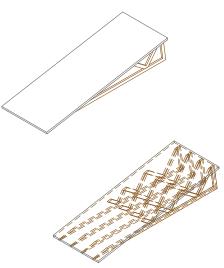


- ★ Einsatz als architektonisches Gestaltungselement
- ★ verbesserte Auflagersituation
- Auflösung der Verbundwirkung ist insbesondere im Auflagerbereich (Übertragung der Querkraft) problematisch
- Sonderkonstruktion im Auflagerbereich

Kommentar:

kommt daher im finalen Entwurf nicht zum Einsatz

0028.0 **Oberlichtelement** #4



- ★ Einsatz als architektonisches Gestaltungselement
- → erhöhter Tragquerschnitt an der Schwachstelle
- Auflösung der Verbundwirkung ist insbesondere im Auflagerbereich (Übertragung der Querkraft) problematisch

Kommentar:

kommt daher im finalen Entwurf nicht zum Einsatz

0028.0 **Sheddachelement**

- + Einsatz als architektonisches Gestaltungselement
- Hybridkonstruktion verliert Ihre spezifische symbiotische Funktion

Kommentar:

kommt im finalen Entwurf nicht zum Einsatz

0028.0 **Doppeltes Shedda-chelement**

- + Verdoppelung der Spannweiten
- Hohe Momente in Feldmitte machen die Konstruktion unwirtschaftlich / unumsetzbar als HBV-hybridkonstruktion

Kommentar:

kommt im finalen Entwurf nicht zum Einsatz

OIB Richtlinien

OIB-Richtlinien 2011

Dieser wissenschaftlich-künstlerischen Arbeit liegt kein konkreter Ort im Sinne eines Bauplatzes zugrunde. Alle Anforderungen die diese erfüllen könnte, ergeben sich daher aus den OIB Richtlinien.

Was bedeutet OIB?

"Das Österreichische Institut für Bautechnik (OIB) ist die Koordinierungsplattform der österreichischen Bundesländer auf dem Gebiet des Bauwesens, insbesondere im Zusammenhang mit der Umsetzung der Bauproduktenrichtlinie. Gleichzeitig ist das Institut Zulassungsstelle für die Erteilung europäischer technischer Zulassungen und Akkreditierungsstelle für Prüf-, Überwachungs- und Zertifizierungsstellen für Bauprodukte. [...] Das "Österreichische Institut für Bautechnik", abgekürzt "OIB", ist ein gemeinnütziger Verein mit Sitz in Wien. Die Tätigkeit des Vereines erstreckt sich auf das gesamte Gebiet der Republik Österreich. Dem Verein gehören die österreichischen Bundesländer Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Steiermark, Tirol, Vorarlberg und Wien als Mitglieder an.

Die OIB-Richtlinien wurden in der Generalversammlung des OIB am 6. Oktober 2011 unter Anwesenheit der Vertreter aller Bundesländer beschlossen.

Die OIB-Richtlinien dienen als Basis für die Harmonisierung der bautechnischen Vorschriften und können von den Bundesländern zu diesem Zweck herangezogen werden. Die Erklärung einer rechtlichen Verbindlichkeit der OIB-Richtlinien ist den Ländern vorbehalten.

Daten des Inkrafttretens der OIB-Richtlinien 2011 in den einzelnen Bundesländern: (Stand 08.08.2013)

Bundesland	OIB-Richtlinie 1 bis 5	OIB-Richtlinie 6
Burgenland	8. Jänner 2013	8. Jänner 2013
Kärnten	1. Oktober 2012	1. Oktober 2012
Niederösterreich	-	(OIB-RL 2007 noch in Kraft)
Oberösterreich	1. Juli 2013	1. Juli 2013
Salzburg	-	(OIB-RL 2007 noch in Kraft)
Steiermark	1. Jänner 2013	1. Jänner 2013
Tirol	(OIB-RL 2007 noch in Kraft)	(OIB-RL 2007 noch in Kraft)
Vorarlberg	1. Jänner 2013	1. Jänner 2013
Wien	1. Jänner 2013	1. Jänner 2013

(QUELLE)

Webpage des Österreichischen Institutes für Bautechnik: www.oib.or.at

OIB.000

OIB - Richtlinie

Begriffsbestimmungen

Es wurde darauf geachtet jene Begriffsbestimmungen zu verwenden, die in dieser wissenschaftlich-künstlerischen Arbeit vorkommen.

GK1	jeweils < 400 m² Bruttogrundfläche der oberird. Geschosse max. 3 oberird. Geschosse max. 7m Fluchtniveau 1e Wohnung bzw. Betriebseinheit
	Punkte die nur die nur TYP 2 betreffen sind daher i.d.F. grau markiert

siehe TYP 2

GK1 jeweils < 400 m² Bruttogrundfläche der oberird. Geschosse

max. 3 oberird. Geschosse max. 7m Fluchtniveau

max. 5 Wohnungen bzw. Betriebseinheiten

GI	alle Gebäude die nicht GK1 bzw. GK2 sind mit max. 3 oberird. Geschosse max. 7m Fluchtniveau

siehe TYP 3 und 4

OIB - Richtlinie 1

Mechanische Festigkeit und Standsicherheit

- Tragsicherheit ÖN EN 1990
- tragwerksspezifische Überwachungsmaßnahmen durch unabhängige und befugte Dritte für Bauwerke mit wichtiger sozialer Funktion (z. B. Kindergärten, Schulen).

OIB - Richtlinie 2

Brandschutz

Sofern in dieser Richtlinie Anforderungen an die Feuerwiderstandsklasse in Verbindung mit Anforderungen an Baustoffe der Klasse A2 gestellt werden, gilt dies auch als erfüllt, wenn die für die Tragfähigkeit wesentlichen Bestandteile der Bauteile der Klasse A2 entsprechen und die sonstigen Bestandteile aus Baustoffen der Klasse B bestehen.
Raumabschließende Bauteile müssen zusätzlich - sofern ein Durchbrand nicht ausgeschlossen werden kann - beidseitig mit Baustoffen der Klasse A2 dicht abgedeckt sein.

Von den Anforderungen dieser Richtlinie kann abgewichen werden, wenn die **Schutzziele** auf gleichem Niveau wie bei Anwendung dieser Richtlinie erreicht werden, wobei der OIB-Leitfaden "Abweichungen im Brandschutz und Brandschutzkonzepte" anzuwenden ist.

(2) Allgemeine Anforderungen und Tragfähigkeit im Brandfall:

(2.1) Brandverhalten von Baustoffen siehe Tabelle 1a

Sofern in dieser Richtlinie Anforderungen an den Feuerwiderstand von Bauteilen mit Anforderungen an das Brandverhalten von Baustoffen verknüpft werden, beziehen sich die Anforderungen an das Brandverhalten nur auf jenen Teil der Konstruktion, der zur Erreichung der Feuerwiderstandsklasse erforderlich ist. Für allenfalls zusätzlich angebrachte Bekleidungen, Beläge und dergleichen gelten hinsichtlich des Brandverhaltens von Baustoffen die Anforderungen der Tabelle 1a.

Tabelle 1a: Allgemeine Anforderungen an das Brandverhalten

	Gebäudeklassen (GK)	GK 1	GK 2	GK 3	GK 4	GK 5
	aden					
	ußenwand-Wärmedämmverbundsysteme	E	D	D	C-d1	C-d1
	assadensysteme, vorgehängte hinterlüftete, belüft	·····		т	T	
.2.1	Klassifiziertes Gesamtsystem oder	E	D-d1	D-d1	B-d1 ⁽¹⁾	B-d1 ⁽²⁾
.2.2	Klassifizierte Einzelkomponenten	1	1	f	1 (2)	1 (4)
	- Außenschicht	E	D	D	A2-d1 ⁽³⁾	A2-d1 (4)
	 Unterkonstruktion stabförmig / punktförmig 	E/E	D/D	D / A2	D / A2	C / A2
	- Dämmschicht bzw. Wärmedämmung	E	D	D	B (3)	B (4)
	Sonstige Außenwandbekleidungen oder -beläge	E	D-d1	D-d1	B-d1 (5)	B-d1 ⁽⁶⁾
.4 G	Geländerfüllungen bei Balkonen, Loggien u. dgl.	-	-	-	B ⁽⁵⁾	B ⁽⁶⁾
Gäng	ge und Treppen jeweils außerhalb von Wohnun	gen: Bekleidu	ngen und Bel	äge sowie abge	hängte Decke	en
.1 V	Vandbekleidungen ⁽⁷⁾					
.1.1	Klassifiziertes Gesamtsystem oder	-	D	D	C	В
.1.2	Klassifizierte Einzelkomponenten					
	- Außenschicht	-	D	D	C (5)	В
	- Unterkonstruktion	-	D	D	A2 (5)	A2 (5)
	- Dämmschicht bzw. Wärmedämmung	-	С	С	С	A2
.2 a	bgehängte Decken	-	D-d0	D-d0	C-s1, d0	B-s1, d0
	Vand- und Deckenbeläge	-	D-d0	D-d0	C-s1, d0	B-s1,d0
.4 B	Bodenbeläge	-	D _{fl}	D _{fl}	C _{ff} -s1 ⁽⁸⁾	C _{ff} -s1
	penhäuser: Bekleidungen und Beläge sowie ab	ngehängte Dec		i		
	Vandbekleidungen (7)	genungte Det	J.K. CII			
.1.1	Klassifiziertes Gesamtsystem oder	I	D	С	В	A2
.1.1	Klassifizierte Einzelkomponenten	-	D	10	l p	AZ
. 1.2	- Außenschicht	I	D	C (5)	В	A2
	- Ausenschicht - Unterkonstruktion	-	D	A2 (5)	A2 ⁽⁵⁾	A2 (5)
	- Dämmschicht bzw. Wärmedämmung	-	C	C	A2	A2
0 -	•	-				1000000
	bgehängte Decken	_	D-s1, d0	C-s1, d0	B-s1, d0	A2-s1, d0
	Vand- und Deckenbeläge	-	D-s1, d0	C-s1, d0	B-s1,d0	A2-s1, d0
	Bodenbeläge	ı	I = .	1	T	1.0
3.4.1	in Treppenhäusern gemäß Tabelle 2a, 2b	-	D _{ff} -s1	C _{ff} -s1	B _{ff} -s1	A2 _{ff} -s1
.4.2	in Treppenhäusern gemäß Tabelle 3	-	D _{ff} -s1	C _{ff} -s1 ⁽⁸⁾	C _{ff} -s1	A2 _{ff} -s1 ⁽⁹⁾
	ner mit einer Neigung ≤ 60°					
	Bedachung (Gesamtsystem) ⁽¹⁰⁾	B _{ROOF} (t1)	B _{ROOF} (t1)	B _{ROOF} (t1)	B _{ROOF} (t1)	B _{ROOF} (t1) (
	Dämmschicht bzw. Wärmedämmung in der Dach-	E	E	E	B (12)	B (13)
K	onstruktion					
	t ausgebaute Dachräume: Fußbodenkonstrukti	onen und Bela	age			
	ußbodenkonstruktionen (Bekleidungen)	ſ				
.1.1	Klassifiziertes Gesamtsystem oder	-	E	D	D	В
.1.2	Klassifizierte Einzelkomponenten	ı	1		1	1
	- Außenschicht	-1	С	С	В	В (40)
	- Dämmschicht bzw. Wärmedämmung	-	E	E	B (12)	B (13)
	Bodenbeläge	-	Eff	D _{fl}	C _{fl} -s1	B _{ff} -s1
	nd auch Holz und Holzwerkstoffe in D zulässig, wenn das					
	ebäuden mit nicht mehr als fünf oberirdischen Geschoße ulässig, wenn das klassifizierte Gesamtsystem die Klasse		chtniveau von nie	cht mehr als 13 m	sind auch Holz u	and Holzwerksto
	ner Dämmschicht/Wärmedämmung in A2 ist eine Außens		ler aus Holz und	Holzwerkstoffen in	D zulässig;	
	ner Dämmschicht/Wärmedämmung in A2 ist eine Außen					
	nd einem Fluchtniveau von nicht mehr als 13 m sind bei e nd auch Holz und Holzwerkstoffe in D zulässig;	einer Dammschic	nt/vvarmedammu	ing in A2 auch Hol	z und Holzwerks	τοπe in D zuläss
	ebäuden mit nicht mehr als fünf oberirdischen Geschoße	n und einem Flu	chtniveau von nie	cht mehr als 13 m	sind auch Holz ι	and Holzwerksto
in D z	ulässig;					
	n in Gängen und Treppenhäusern Wand- bzw. Deckenbe die Anforderungen für Wand- bzw. Deckenbeläge gemäß			is Gesamtsystem)	bzw. die Außen	scnicht der Bek
	nölzer (z.B Eiche, Rotbuche, Esche) mit einer Mindestdick					

- [8] Laubhölzer (z. B Eiche, Rotbuche, Esche) mit einer Mindestdicke von 15 mm sind zulässig;
 (9) Bei Gebäuden mit nicht mehr als fünf oberirdischen Geschoßen genügt B_m-s1;
 (10) Sofern bei Dächern mit einer Neigung < 20° eine oberste Schicht mit 5 cm Kies oder Gleichwertigem vorhanden ist, ist Eindeckung in E ausreichend;
 (11) Bei Dächern mit einer Neigung ≥ 20°müssen Eindeckung, Lattung, Konterlattung und Schalung der Klasse A2 entsprechen; abweichend davon sind für Lattung, Konterlattung und Schalung auch Holz und Holzwerkstoffe in D zulässig;
 (12) In folgenden Fällen sind auch EPS, XPS und PUR der Klasse E zulässig;
 auf Dächern mit einer Neigung < 20° bzw. auf der obersten Geschoßdecke oder
 auf Dächern mit einer Neigung ≥ 20°, die in A2 hergestellt sind und die gemäß Tabelle 1b erforderliche Feuerwiderstandsdauer auch hinsichtlich der Leistungseigenschaften E und I erfüllen;
 (13) Es sind auch EPS, XPS und PUR der Klasse E bei Dächern mit einer Neigung < 20° bzw. auf der obersten Geschoßdecke zulässig, sofern diese in A2 hergestellt sind und die gemäß Tabelle 1b erforderliche Feuerwiderstandsdauer auch hinsichtlich der Leistungseigenschaften E und I erfüllt wird.

(2.2)Feuerwiderstand von Bauteilen: siehe Tabelle 1b

Tabelle 1b: Allgemeine Anforderungen an den Feuerwiderstand von Bauteilen

Gebäudeklassen (GK)	GK 1	GK 2	GK 3	GK 4	GK 5		
1 tragende Bauteile (ausgenommen Decken	und brandabsch	nittsbildende V	Vände)				
1.1 im obersten Geschoß	-	R 30	R 30	R 30	R 60 ⁽¹⁾		
1.2 in sonstigen oberirdischen Geschoßen	R 30 (2)	R 30	R 60	R 60	R 90 und A2		
1.3 in unterirdischen Geschoßen	R 60	R 60	R 90 und A2	R 90 und A2	R 90 und A2		
2 Trennwände (ausgenommen Wände von Treppenhäusern)							
2.1 im obersten Geschoß	nicht zutreffend	REI 30 EI 30	REI 30 EI 30	REI 60 EI 60	REI 60 ⁽¹⁾ EI 60 ⁽¹⁾		
2.2 in oberirdischen Geschoßen	nicht zutreffend	REI 30 EI 30	REI 60 EI 60	REI 60 EI 60	REI 90 und A2 EI 90 und A2		
2.3 in unterirdischen Geschoßen	nicht zutreffend	REI 60 EI 60	REI 90 und A2 EI 90 und A2	REI 90 und A2 EI 90 und A2	REI 90 und A2 EI 90 und A2		
zwischen Wohnungen bzw. Betriebseinheiten in Reihenhäusern	nicht zutreffend	REI 60 EI 60	nicht zutreffend	REI 60 EI 60	nicht zutreffend		
3 brandabschnittsbildende Wände und Deck	en						
3.1 brandabschnittsbildende Wände an der Grundstücks- bzw. Bauplatzgrenze	REI 60 EI 60	REI 90 ⁽³⁾ EI 90 ⁽³⁾	REI 90 und A2 EI 90 und A2	REI 90 und A2 EI 90 und A2	REI 90 und A2 EI 90 und A2		
sonstige brandabschnittsbildende Wände oder Decken	nicht zutreffend	REI 90 EI 90	REI 90 EI 90	REI 90 EI 90	REI 90 und A2 EI 90 und A2		
4 Decken und Dachschrägen mit einer Neigu	ng ≤ 60°						
4.1 Decken über dem obersten Geschoß	-	R 30	R 30	R 30	R 60 ⁽¹⁾		
Trenndecken über dem obersten Geschoß	-	REI 30	REI 30	REI 60	REI 60 (1)		
Trenndecken über sonstigen oberirdischen Geschoßen	-	REI 30	REI 60	REI 60	REI 90 und A2		
Decken innerhalb von Wohnungen bzw. 4.4 Betriebseinheiten in oberirdischen Geschoßen	R 30 ⁽²⁾	R 30	R 30	R 30	R 90 ⁽¹⁾ und A2		
4.5 Decken über unterirdischen Geschoßen	R 60	REI 60 ⁽⁴⁾	REI 90 und A2	REI 90 und A2	REI 90 und A2		
5 Balkonplatten	-	-	-	R 30 oder A2	R 30 und A2		
 Bei Gebäuden mit nicht mehr als sechs oberir standsdauer von 60 Minuten ohne A2; 	dischen Geschoß	en genügt für di	e beiden oberster	n Geschoße die F	euerwider-		
(2) Nicht erforderlich bei Gebäuden, die nur Wohr (3) Bei Reihenhäusern genügt für die Wände zwis platzgrenze eine Ausführung in REI 60 bzw. E	schen den Wohnt						

(3) Ausbreitung von Feuer und Rauch innerhalb des Bauwerkes

(3.1)Brandabschnitte

jedenfalls kleiner als die maximale Brandabschnittsgrösse (1200 bzw. 1600 m²)

(3.2)Trennwände und Trenndecken

Trennung von Wohn- bzw. Betriebseinheiten zu anderen Gebäudeteilen entsprechen Tabelle 1b. Zusammenfassung mehrerer Betriebseinheiten ist möglich > maximale Brandabschnittsgrösse als Betriebseinheit

⁽⁴⁾ Für Reihenhäuser sowie Gebäude mit nicht mehr als zwei Wohnungen oder zwei Betriebseinheiten mit Büronutzung bzw. büroähnlicher Nutzung genügt die Anforderung R 60.

Für Türen in Trennwänden gilt:

- (a) Tabelle 2a, 2b bzw. 3 für Türen in Wänden von Treppenhäusern,
- (b) EI2 30 für Türen und EI 30 für damit verbundene Oberlichten gleicher Breite in Trennwänden von Gängen zu Wohnungen oder von Gängen zu Betriebseinheiten mit Büronutzung oder büroähnlicher Nutzung; ausgenommen davon sind Reihenhäuser sowie Gebäude der Gebäudeklasse 2 mit nicht mehr als zwei Wohnungen,
- (c) EI2 30-C für sonstige Türen in Trennwänden,
- (d) EI2 30 für Türen bzw. Abschlüsse in Decken zu nicht ausgebauten Dachräumen; ausgenommen davon sind Gebäude der Gebäudeklassen 1 und 2.
- (3.7) Feuerstätten und Verbindungsstücke
- (3.9) Räume mit erhöhter Brandgefahr
 Heiz-, Brennstofflager- und Abfallsammelräume gelten jedenfalls als Räume mit
 erhöhter Brandge-fahr.: Türen, Tore: EI2 30-C, Bodenbelag A2fl
 Ob ein Heizraum It. OIB besteht ist im Einzelfall zu klären.
- (3.10) Erste und erweiterte Löschhilfe
 Sofern es der Verwendungszweck erfordert, jedenfalls aber in Gebäuden mit
 Wohnungen bzw. Be-triebseinheiten sind ausreichende und geeignete Mittel der
 ersten Löschhilfe (z.B. tragbare Feuerlöscher) bereitzuhalten.
- (3.7) Feuerstätten und Verbindungsstücke
- (3.9) Räume mit erhöhter Brandgefahr
 Heiz-, Brennstofflager- und Abfallsammelräume gelten jedenfalls als Räume mit
 erhöhter Brandge-fahr.: Türen, Tore: EI2 30-C, Bodenbelag A2fl
 Ob ein Heizraum It. OIB besteht ist im Einzelfall zu klären.
- (3.10) Erste und erweiterte Löschhilfe
 Sofern es der Verwendungszweck erfordert, jedenfalls aber in Gebäuden mit
 Wohnungen bzw. Be-triebseinheiten sind ausreichende und geeignete Mittel der
 ersten Löschhilfe (z.B. tragbare Feuerlöscher) bereitzuhalten.

(4) Ausbreitung des Feuers auf andere Bauwerke

(5) Flucht- und Rettungswege

max. 40m Gehweglänge von jeder Stelle des Raumes (dürfen max. 25m gemeinsam verlaufen)

ein direkter Ausgang ins Freie

ein Treppenhaus oder Aussentreppe, das ins Freie führt (Tabelle 2a bzw. 2b) zwei Treppenhäuser bzw. Aussentreppen (Tabelle 3)

(alle o.a. Tabellen beziehen sich auf die Anforderungen an Treppenhäuser und sind daher nicht in diese Zusammenfassung implementiert)

(7) Besondere Bestimmungen

- (7.2) Schul- und Kindergartengebäude sowie andere Gebäude mit vergleichbarer Nutzung
 - Gebäude der GK 1 und 2 sind prinzipiell GK3 ausser sie haben nur 1 Geschoss.
 - max. NettroGurndfläche Brandabschnitt 1.600 m²
 - Feuerstätten gelten jedenfalls als Heizraum, außer es handelt sich um Gasthermen mit einer Nennwärmeleistung > 50kW
 - Alarmierungseinrichtungen müssen vorhanden sein
 - Anbringung von vernetzten Rauchwarnmeldern in allen Aufenthaltsräumen, Gänge die als Fluchtwege gelten

OIB - Richtlinie 3

Hygiene, Gesundheit und Umweltschutz

(2) Sanitäreinrichtungen

Fußböden und Wände von Sanitärräumen: Müssen leicht zu reinigen sein. Toiletten mit Wasserspülung

(3) Niederschlagswässer, Abwässer und sonstige Abflüsse

Niederschlagswässer, die nicht als Nutzwasser verwendet werden, sind technisch einwandfrei zu versickern, abzuleiten oder zu entsorgen.

(4) Abfälle

Bauwerke müssen über Abfallsammelstellen oder Abfallsammelräume verfügen, die dem Verwendungszweck entsprechen.

(5) Abgase von Feuerstätten

- Die Mündungen von Abgasanlagen müssen so hoch geführt werden, dass sie innerhalb eines horizentalen Umkreises von 10 m die Sturzunterkanten aller öffenbaren Fenster von Aufenthaltsräumen sowie die Oberkante von Zuluftöffnungen von Lüftungsanlagen um folgende Mindestwerte überragen:
- 3 m, wenn die Mündung vor einem Fenster bzw. einer Zuluftöffnung liegt,
- ansonsten 1 m.
- Die Mündung muss den First um mindestens 0,4 m überragen, oder es müssen folgende Mindestabstände von der Dachfläche, normal zu dieser gemessen, eingehalten werden:
- 0,6 m bei mit Gas oder Öl betriebenen Feuerstätten, bei denen die Temperatur der Abgase unter den Taupunkt abgesenkt wird (Brennwertkessel),
- ansonsten 1 m.

Bei Flachdächern ist die Mündung 0,4 m über die Oberkante der Attika und zumindest 1 m über die Dachfläche zu führen.

• Abweichungen für mit Gas betriebene Feuerstätten

(9) Belichtung und Beleuchtung

• Aufenthaltsräumen: gesamte Lichteintrittsfläche (Nettoglasfläche) der Fenster mindestens 10 % der Bodenfläche dieses Raumes es sei denn, die spezielle Nutzung erfordert dies nicht. Dieses Maß vergrößert sich ab einer Raumtiefe von mehr als 5 m um jeweils 1 % der gesamten Bodenfläche des Raumes pro angefangenen Meter zusätzlicher Raumtiefe.

Weist die verwendete Verglasung einen Lichttransmissionsgrad τ_v von weniger als 0,65 auf, so ist die Lichteintrittsfläche im gleichen Verhältnis zu vergrößern.

- 45° Lichteinfallswinkel, seitlich um max. 30° verschwenkt
- Bei Auskragungen > 0.50 < 3.0 m:

die Lichteintrittsfläche pro angefangenem Meter, gemessen vom Eintritt des vorspringenden Bauteils in den freien Lichteinfall, muss um jeweils 2 % der Bodenfläche des Raumes erhöht werden.

OIB - Richtlinie 4

Nutzungssicherheit und Barrierefreiheit

(2.2) Durchgangsbreiten von Gängen und Treppen

- min. Durchgangsbreite 1,20m
- Fluchtwege: 120 Personen, i.d.Folge kurz P

121 P > 1,20 + 60 m

181 P > 1,20 + ,60 + ,60 m etc.

um jeweils angefangen 60 Personen ist die Fluchtwegsbreite um 60cm zu erhöhen Durchgangsbreiten der Türen sind ebenso zu adaptieren:

20 P > 80 cm, 40 P > 90 cm, 60 P > 100 cm, 120 P > 120 cm, > 120 P siehe Fluchtwegsbreite

- Podest nach max. 20 Stufen bei Haupttreppen
- maximale Treppenfluchtwegsbreite = 2,40m (sonst per Handlauf zu unterteilen)
- Durchgangshöhen min 2,10m
- barrierefreie Türen b min = 90 cm, h min = 2m
- Aufgehrichtung in Fluchtwegsrichtung wenn mehr als 15 P

(7) Blitzschutz

Bauwerke sind mit einer Blitzschutzanlage auszustatten.

(8) Zusätzliche Anforderungen an die barrierefreie Gestaltung von Bauwerken siehe ÖNORM B 1600

OIB - Richtlinie 5

Schallschutz

(2) Baulicher Schallschutz

- (2.2) Anforderungen an den Schallschutz von Außenbauteilen allgemein:
 - \bullet das bewertete resultierende Bauschalldämm-Maß R $^{'}_{_{RES}}\!,\!w$ der Außenbauteile gesamt = 33 dB
 - •das bewertete Schalldämm-Maß Rw der opaken Außenbauteile = 43 dB

Die Angaben der OIB entsprechen den Angaben der ÖNORM B8115-2 und sind daher in den Tabellen der kommenden Seiten nachzulesen:

OIB - Richtlinie 6

siehe Kapitel Aufbauten

Tabelle 1 - Planungsrichtwerte für gebietsbezogene Schallimmissionen

Planungsrichtwerte für gebietsbezogene Schallimmissionen							
Bauland- Gebie	Gebiet		A-bewerteter äquivalenter Dauerschallpegel, L _{A,eq}				
Kategorie		C	IB .				
		bei Tag	bei Nacht				
1	Ruhegeblet, Kurgebiet	45	35				
2	Wohngebiet in Vororten, Wochenendhaus-Gebiet, ländliches Wohngebiet	50	40				
3	städtisches Wohngebiet, Gebiet für Bauten land- und forstwirtschaftlicher Betriebe mit Wohnungen	55	45				
4	Kerngeblet (Büros, Geschäfte, Handel und Verwaltung ohne Schallemission sowie Wohnungen), Gebiet für Betriebe ohne Schallemission	60	50				
5	Geblet für Betriebe mit geringer Schallemission (Verteilung, Erzeugung, Dienstleistung, Verwaltung)	65	55				

Tabelle 2 - Mindesterforderliche Schalldämmung von Außenbauteilen

Bauteile von zu schützenden Räumen		Mindestschallschutz in dB ($R'_{res,w}$, R'_{w} , R_{w} bzw. R_{w} + C_{tr}) für maßgebliche Außenlämpegel-Stufen							
(Aufenthaltsräumen)			1	 				J _	
	Spalte	1	2	3	4	5	6	7	Zeile
	Stufe	A, B, C	D	E	F	G	Н	1	1
	Tag	≤ 50	51 bis 55	56 bls 60	61 bis 65	66 bis 70	71 bis 75	76 bis 80	2
	Nacht	≤ 40	41 bis 45	46 bis 50	51 bis 55	56 bis 60	61 bis 65	66 bis 70	3
Entspricht den Richtwerten d Tabelle 1, Zeile(n)	er	1, 2	3	4	5	_	-		4
Wohngebäude, -heime, Hote	ls, Schulen,	Kindergä	rten, Kranl	kenhäuser	, Kurgebä	ude u. dgl.			5
 Außenbauteile gesamt 	R'res,w	33	38	38	43	43	48	53	6
Opake Außenbauteile ¹)	R _w	43	43	43	48	48	53	58	7
Fenster und Außentüren ¹) ²)	$R_{\rm w}$ $R_{\rm w} + C_{\rm tr}$	28 23	33 28	33 28	38 33	38 33	43 38	48 43	8
 Gebäudetrennwände3) je Wand 	R'w	52	52	52	52	52	52	52	9
 Decken und Wände gegen Dachböden 	R'w	42	42	42	47	47	47	47	10
 Decken und Wände gegen Durchfahrten und Garagen 	R'w	60	60	60	60	60	60	60	11
Verwaltungs- und Bürogebäu	de u. dgl.								12
- Außenbauteile gesamt	R'res,w	33	33	33	33	38	43	48	13
Opake Außenbauteile ¹)	$R_{\mathbf{w}}$	43	43	43	43	43	48	53	14
Fensier und Außentüren ¹) ²)	$R_{\rm w}$ $R_{\rm w}$ + $C_{\rm tr}$	28 23	28 23	28 23	28 23	33 28	38 33	43 38	15
 Gebäudetrennwände³) je Wand 	R'w	52	52	52	52	52	52	52	16
Decken und Wände gegen Dachböden	R'w	42	42	42	42	42	42	42	17
Decken und Wände gegen Durchfahrten und Garagen	R' _w	60	60	60	60	60	60	60	18

1) Bei einem Flächenanteil der Fenster und Außentüren von mehr als 30 % der Fläche des raumbezogenen Außenbauteils sind die erforderlichen Schalldämm-Maße für die Erfüllung des resultierenden Mindestschalldämm-Maßes entsprechend ihrem

OIB.ÖNB8115-2

Flächenantell zu bemessen.

Flächenantell zu bemessen.

Flächenantell zu bemessen.

Flächenantell zu bemessen.

Wände, die an vorhandene Gebäude angebaut werden oder an welche andere Gebäude angebaut werden können. Die Forderung gilt unabhängig von der Schalldämmung der anderen Gebäudeaußenwand.

ANHANG

Code	Buchtitel Name der Zeitschrift	Num- mer/Aus- gabe	Autor	Herausgeber	Verlag
BBO.007	Betonkraft Werk		Stefan Buxbaum		
HBV.000					
HBV.003	Untersuchungen zu Einsatzmög- lichkeiten von Holzleichtbeton im Bereich von Gebäudefassaden		Roland Krippner		Dissertation, Technischen Universität München
HBV.004	Holz-Beton-Verbund			Gert König, Klaus Holsche- macher, Frank Dehn	Bauwerk Verlag GmbH
HBV.005	Holz-Beton-Verbund			Gert König, Klaus Holsche- macher, Frank Dehn	Bauwerk Verlag GmbH
HBV.006	Holz-Beton-Verbund			Gert König, Klaus Holsche- macher, Frank Dehn	Bauwerk Verlag GmbH
HBV.007	Holz-Beton-Verbund			Gert König, Klaus Holsche- macher, Frank Dehn	Bauwerk Verlag GmbH
HBVH.001	Holzspektrum – Ansichten, Beschreibungen und Vergleichswerte		DI Dr. Josef Fellner, Univ Prof. DI Dr. Alfred Teischinger, Dipl. Arch. ETH Dr. Walter Zschokke		pro Holz Austria
HBVH.002	Holzspektrum – Ansichten, Beschreibungen und Vergleichswerte		DI Dr. Josef Fellner, Univ Prof. DI Dr. Alfred Teischinger, Dipl. Arch. ETH Dr. Walter Zschokke		pro Holz Austria

Druckwerke u.a. **Quellennachweis**

Verlagsort	Er- schei- nungs- jahr	Erscheinungsort	Auf- lage	ISBN Nummer	Übersetzung	Anmerkungen
						PDF Seite 8 _ Fotobeton
Diese Kapitel bildet ei	ine Zusamm	enfassung der mit ,	HBV' gel	kennzeichneten Dr	uck- bzw. Interne	twerke.
	2004	München				
Berlin	2004	Berlin		ISBN 3-89932- 054-9		S147
Berlin	2004	Berlin		ISBN 3-89932- 054-9		S14
Berlin	2004	Berlin		ISBN 3-89932- 054-9		S42
Berlin	2004	Berlin		ISBN 3-89932- 054-9		S292
Österreich	2006			ISBN: 3-902320- 31-1		Seite 56-57
Österreich	2006			ISBN: 3-902320- 31-1		Seite 74-75

Code	Buchtitel Name der Zeitschrift	Num- mer/Aus- gabe	Autor	Herausgeber	Verlag
KIGA.001	KINDERGARTEN ARCHITECTURE		Mark Dudek		E & FN Spon
KGA. Hertzber- ger.01.001	The schools of Herman Hertzberger		Herman Herz- berger, Abram de Swaan		010 Publishers
KGA. Hertzber- ger.02.001	The schools of Herman Hertzberger		Herman Herz- berger, Abram de Swaan		010 Publishers
KGA. Hertzber- ger.03.001	The schools of Herman Hertzberger		Herman Herz- berger, Abram de Swaan		010 Publishers
KGA. Hirner& Riehl.001	DETAIL	Einfach Bauen Zwei			"Edition DETAIL — Institut für internationale Architektur- Dokumentation GmbH & Co. KG München"
KGA. Schulz.001	DETAIL	Einfach Bauen Zwei			"Edition DETAIL — Institut für internationale Architektur- Dokumentation GmbH & Co. KG München"
KUMPF. 001					
OIB. ÖNB8115- 2	Schallschutz und Raumakusitk im Hochbau	ÖNORM B 8115-2		Österr. Nor- mungsinstitut	Österr. Nor- mungsinstitut

Druckwerke u.a. **Quellennachweis**

Verlagsort	Er- schei- nungs- jahr	Erscheinungsort	Auf- lage	ISBN Nummer	Übersetzung	Anmerkungen
London / England	1996		1.	ISBN: 0 419 196706		Seite 54_ (PDF Seite 66)
Rotterdam, The Netherlands	2009			ISBN: 978 90 6450 646 8	Translation into English – Beverley Jackson	Seite 160 _ Apollo Schools
Rotterdam, The Netherlands	2009			ISBN: 978 90 6450 646 8	Translation into English – Beverley Jackson	Seite 160 _ Apollo Schools
Rotterdam, The Netherlands	2009			ISBN: 978 90 6450 646 8	Translation into English – Beverley Jackson	Seite 160 _ Apollo Schools
München / Deutsch- land	2012			ISBN: 978-3- 920034-62-1		Seite 155 _ Hirner & Riehl Architekten
München / Deutsch- land	2012			ISBN: 978-3- 920034-62-1		Seite 160_ Schulz & Schulz
						Kostenschät- zung Herbert Anreiter
Wien	2006	Wien	2006- 12-01			

Code	Buchtitel Name der Zeitschrift	Num- mer/Aus- gabe	Autor	Herausgeber	Verlag
KNEI.001					
	Passivhaus-Bauteilkatalog		Walter Pokorny,	IBO - Österr.	Springer
			Thomas Zelger, Karl Thorgele	Institut für Baubiologie und -ökologie	
	Baustoff Atlas			Institut für	
				Internationale	
				Architekturdo-	
				kumentation	

Druckwerke u.a. **Quellennachweis**

Verlagsort	Er- schei- nungs- jahr	Erscheinungsort	Auf- lage	ISBN Nummer	Übersetzung	Anmerkungen
						statische Vorbemessung Peter Kneidin- ger
Wien, New York	2008	Wien	01	ISBN 978-3-211- 29763-6		
München	2005	Bühl	01			

Code	Datum_Bildname
BBO.001	130827_Brettschalung
BBO.002	130827_Glatte Schalung
BBO.003	130827_Matrizenschalung
BBO.004	130820_Filtervlies
BBO.005	130827_OSB-Platten
BBO.006	130828_performierte Wand
BBO.007	130827_Waschbeton
BBO.009	130820_gesäuerte Oberfläche
BBO.010	130828_Durchfärbung
BBO.011	130827_Durchfärbung
BBO.012	130820_Beton mit Farblasur
BBO.013	130821_Stahlfaserbeton
BBO.014	130827_Sandstrahlen

World Wide Web **Quellennachweis**

URL	Anmerkungen
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 1
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 2
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 4
nttp://www.harryskoi.de/media/catalog/category/Filtervlies.jpg	
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 4
nttp://www.dfab.arch.ethz.ch//web/includes/popup.php?file=http://www.dfab.arch.ethz.ch/data/bilder/02_Web/043/060808_043_DiePerforierteWand_ML_DK_037_WE.jpg&Copy right=18⟨=d&closeText=click%20to%20close	
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 4
nttp://www.neues-bauen-mit-beton.de/assets/images/R78-VDO-72.jpg	
nttp://che.sika.com/dms/getdocument.get/b281c0d3-1c67-3737-a4c4-7f56f09850a0/Farb- petonLeitfaden_CH_2012_DE_web.pdf	PDF S. 22/abb. 12
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 6
nttp://us.cdn1.123rf.com/168nwm/stocksnapper/stocksnapper0808/ stocksnapper080800598/3429299-background-concrete-with-red-paint.jpg	
nttp://www.beton.de/Arten/stahlfaser.gif	
nttp://www.beton.org/fileadmin/beton-org/media/Dokumente/PDF/Service/ Zementmerkbl%C3%A4tter/H8.pdf	PDF S. 5

Code	Datum_Bildname
ELT.derix	130101_hbv.pdf
HBV.001	130101_GreenWorld Bali_SW.jpg
HBV.002	130101_teilprojekt-15-190.jpg
HBV.008	130101_Schmid2-26.jpg
KGA.ABCG.001	130503_ABCG Architettura
KGA.ABCG. PLAN.01	130827_ABCG Architettura
KGA.ABCG. PLAN.02	130827_ABCG Architettura
KGA.AFKS.001	130518_AFKS
KGA.AFKS.PLAN	130827_AFKS
KGA.AllesWird- Gut.002	130518_AllesWirdGut 2
KGA.AllesWird- Gut.003	130518_AllesWirdGut 3
KGA.AllesWird-	130827_AllesWirdGut

Gut.PLAN

World Wide Web **Quellennachweis**

URL	Anmerkungen
http://www.derix.de/48-0-Downloads.php	Produktbroschüre Derix Holzleimbau. Deutschland
http://greenworldbali.com/InnovativeDesign	
http://www.hb.bv.tum.de/forschung/abgeschlossene/080630-pm-HTO-TP15-Kurzbericht. pdf	ZUKUNFT HOLZ Quer- schnittsbericht und Ent- wicklungspotenziale TU München Lehrstuhl für Holzbau und Bau- konstruktion: UnivProf. DrIng. Stefan Winter, UnivProf. DrIng. Hein- rich Kreuzinger, DiplIng. Peter Mestek
http://www.sga-ssa.ch/pdf/events/Schmid2.pdf http://www.sga-ssa.ch/pdf/events/Schmid2.pdf	SGA-SSA Frühlingstagung 05, OFS-Neuchâtel Matthias Schmid "Schallverhalten und Nachhaltigkeit von Holz- Beton Verbunddecken"
http://www10.aeccafe.com/blogs/arch-showcase/files/2012/03/abcg_molino_vista.jpg	
http://www.archdaily.com/212353/kindergarten-and-multi-purpose-hall-abcg-architettura-lopesbrenna-architetti/a1-layout-9/	Planvorlage
http://www.archdaily.com/212353/kindergarten-and-multi-purpose-hall-abcg-architettura-lopesbrenna-architetti/a1-layout-7/	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2009/12/1262105652-13.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2009/12/1262105676-floor-plan-528x373.jpg	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/01/1263410214-044-a22.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/01/1263410184-044-a06.jpg	
http://dc357.4shared.com/doc/mdMFKMTD/preview005.png	Planvorlage

Code	Datum_Bildname
KGA.Campo Baeza.001	130513_Alberto Campo Baeza 1
KGA.Campo Baeza.002	130513_Alberto Campo Baeza 2
KGA.Campo Baeza.003	130513_Alberto Campo Baeza 3
KGA.Campo Baeza.PLAN	130827_Campo Baeza Plan
KGA.CEBRA.001	130513_CEBRA_in progress
KGA.CEBRA.002	130513_CEBRA
KGA.CEBRA.01. PLAN	130827_CEBRA_in progress
KGA.CEBRA.02. PLAN	130827_CEBRA
KGA.Drost.van. Veen.PLAN.01	130827_Drost_van Veen arch
KGA.Drost+van. Veen.001	130513_Drost_van Veen arch
KGA.Drost+van. Veen.PLAN.02	130827_Drost_van Veen arch
KGA.Fasch& Fuchs.001	130603_Fasch und Fuchs
KGA. Fasch&Fuchs. PLAN	130827_Fasch und Fuchs
KGA.Finner.001	130518_santalsabell Kindergarten 1
KGA.Finner.002	130518_santalsabell Kindergarten 2
KGA.Finner. PLAN	130827_Carroquino_Finner_Arquitectos

World Wide Web **Quellennachweis**

URL	Anmerkungen
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/04/1271797467-benetton-03-hisao-suzuki.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/04/1271797486-benetton-08-marco-zanta.jpg	
http://www.archdaily.com/57151/benetton-kindergarden-alberto-campo-baeza/benetton-05-marco-zanta/	
http://www.archdaily.com/57151/benetton-kindergarden-alberto-campo-baeza/floor-plan-97/	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/04/1270678790-screen-shot-2010-04-07-at-110126png	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/01/1263306559-19-photographer-per-lauridsen.jpg	
http://www.archdaily.com/55609/in-progress-design-kindergarten-cebra/floorplan-10/	Planvorlage
http://www.archdaily.com/46255/lucinahaven-toulov-childcare-cebra/floor-plan-37/	Planvorlage
http://www.archdaily.com/36513/day-care-centre-de-kleine-kikker-drost-van-veen-ar-chitecten/first-floor-plan-5/	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2009/09/1254327472-kik06.jpg	
http://www.archdaily.com/36513/day-care-centre-de-kleine-kikker-drost-van-veen-ar-chitecten/ground-floor-plan-8/	Planvorlage
http://www.faschundfuchs.com/bauten/kiwo/05b_100307-040_korr.jpg	
http://www.zement.at/Service/literatur/fileupl/Kindergarten%20Wolkersdorf.pdf	Planvorlage/PDF S. 2
http://ad009cdnb.archdaily.net/wp-content/uploads/2008/05/31420.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2008/05/31437.jpg	
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQxNE7LGW3JsOwJ2yPkjog3tlIMyHYEbksCsbMFMgTVkTyzeDyA	Planvorlage

Code	Datum_Bildname
KGA.Hertzber- ger.01.PLAN	130827_Herman_Hertzberger
KGA.Hertzberger.02.PLAN	130827_Herman_Hertzberger
KGA.Hertzberger.03.PLAN	130827_Herman_Hertzberger
KGA.JSWD.001	130513_JSWD Architekten
KGA.JSWD.PLAN	130827_JSWD Architekten
KGA.Kauf- mann.001	130513_Hermann Kaufmann 1
KGA.Kauf- mann.002	130513_Hermann Kaufmann 2
KGA.Kaufmann. PLAN	130827_Hermann Kaufmann
KGA.Kirsch.001	130513_KIRSCH
KGA.Kirsch. PLAN.01	130827_KIRSCH
KGA.Kirsch. PLAN.02	130827_KIRSCH
KGA.Mazzan- ti.001	130513_Equipo-de-Mazzanti
KGA.Mazzanti. PLAN	130827_Equipo_de_Mazzanti
KGA.Minimal- studio.001	130513_Minimal studio 3
KGA.Minimal- studio.002	130513_Minimal studio 1
KGA.Minimal- studio.003	130513_Minimal studio 2

URL	Anmerkungen
http://www.architectural-review.com/Pictures/web/p/i/a/ApA_tek_101_cropwe_380.jpg	Planvorlage
http://www.scotland.gov.uk/Resource/Img/207034/0060942.gif	Planvorlage
http://www.architectuurstudioamsterdam.nl/custom_images/abapg.jpg	Planvorlage
http://www.jswd-architekten.de/files/feimages/84046997714468243.jpg	
http://www.archdaily.com/324797/day-care-thyssenkrupp-quarter-essen-jswd-architekten-chaix-morel-et-associes/5106ddfeb3fc4b79920003bf_day-care-thyssenkrupp-quarter-essen-jswd-architekten_jswd_cma_kita_tkq_floorplan_00-png/	Planvorlage
http://www.hermann-kaufmann.at/v2-1.php?kid=7≶=de&oid=07_19&dsc=Kinderhaus%20Garching#	
http://www.hermann-kaufmann.at/v2-1.php?kid=7≶=de&oid=07_19&dsc=Kinderhaus%20Garching#	
http://www.aichner-kazzer.de/projekte/realisierung/KIG/19_kig.jpg	Planvorlage
http://www.ckirsch.at/uploads/images/kindergarten_1220/kiga_2.jpg	
http://www.ckirsch.at/uploads/images/kindergarten_1220/kiga_OG.jpg	Planvorlage
http://www.ckirsch.at/uploads/images/kindergarten_1220/kiga_EG.jpg	Planvorlage
http://static.dezeen.com/uploads/2012/01/dezeen_Timayui-Kindergarten-by-el-Equipo-de-Mazzanti-1.jpg	
http://www.arch2o.com/wp-content/uploads/2013/07/Arch2o-Timayui-Kindergarten-el- Equipo-de-Mazzanti-Architects-55.jpg	Planvorlage
http://plusmood.com/wp-content/uploads/2013/04/schemes-mk-minimalstudio-005.jpg	
http://plusmood.com/wp-content/uploads/2013/04/modular-kindergarten-EXT_003.jpg	
http://plusmood.com/wp-content/uploads/2013/04/modular-kindergarten-EXT_001.jpg	

Code	Datum_Bildname
KGA.Minimal- studio.PLAN	130827_Minimal studio
KGA.Munoz. Miranda.001	130513_Alejandro Muñoz Miranda
KGA.Munoz. Miranda.PLAN	130827_Alejandro Muñoz Miranda
KGA.PPAG. architects.001	130513_PPAG
KGA.PPAG.ar- chitects.PLAN	130827_PPAG architects
KGA.Prochaz- ka.001	130513_Prochazka_carminweg
KGA.Prochazka. PLAN	130827_Prochazka_carminweg
KGA. Ramstad.001	130513_Reiulf Ramstad
KGA.Ramstad. PLAN	130827_Reiulf Ramstad
KGA.RCR.001	130513_RCR Arquitectos 1
KGA.RCR.002	130513_RCR Arquitectos 2
KGA.RCR.PLAN	130827_RCR Arquitectos
KGA.Rein- berg.001	130513_Reinberg
KGA.Reinberg. PLAN	130827_Reinberg
KGA.Ripollti- zon.001	130513_RIPOLLTIZON
KGA.Ripolltizon. PLAN	130827_RIPOLLTIZON

URL	Anmerkungen
http://plusmood.com/wp-content/uploads/2013/04/main-plan-mk-minimalstudio.jpg	Planvorlage
http://static.dezeen.com/uploads/2010/06/dzn_Educational-Centre-by-Alejandro-Mu%C3%B1oz-Miranda-2.jpg	
http://www.archdaily.com/79913/educational-centre-in-el-chaparral-alejandro-munoz-miranda/floor-plan-203/	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2011/03/1299175761-ppagbchbf-001.jpg	
http://www.ppag.at/cms/media/img/580_bchbf/bchbf_06.jpg	Planvorlage
http://www.spiluttini.com/project.php?id=3231	
http://www.prochazka.at/projects/kindertagesheim/09.html	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2011/03/1300382543-fagerborg-5.jpg	
http://www.architecturenewsplus.com/cdn/images/o/n/o/9/no9stf4.jpg	Planvorlage
http://en.wikiarquitectura.com/images/9/9e/Guarderia_Els_Colors_4.jpg	
http://en.wikiarquitectura.com/images/3/33/Guarderia_Els_Colors_15.jpg	
http://en.wikiarquitectura.com/images/thumb/8/80/Guarderia_Els_Colors_Planta.jpg/120px-Guarderia_Els_Colors_Planta.jpg	Planvorlage
http://www.reinberg.net/projects/167/plans/normal/P7.jpg	
http://www.reinberg.net/projects/167/plans/normal/P5.jpg	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/01/50e4acbbb3fc4b1b32000 0f8_consell-kindergarten-ripolltizon_04_consell_kindergarten_by_ripolltizon.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/01/50e4ac3fb3fc4b1a470000 de_consell-kindergarten-ripolltizon_13_consell_kindergarten_by_ripolltizon-528x316.png	Planvorlage

Code	Datum_Bildname
KGA.Rueda. Pizarro.001	130518_Rueda Pizarro Arquitectos 1
KGA.Rueda. Pizarro.002	130518_Rueda Pizarro Arquitectos 2
KGA.Rueda. Pizarro.PLAN	130827_Rueda Pizarro.Aquitectos
KGA.Schütte- Lihotzky.001	130518_SchütteLihotzky
KGA.Schütte- Lihotzky.PLAN	130827_SchütteLihotzky
KGA.SOLID.001	130518_Solid Arch. 1
KGA.SOLID.002	130518_Solid Arch. 2
KGA.SOLID.PLAN	130827_Solid_Architecture
KGA.Tezu- ka.01.001	130603_Tezuka_Asahi kindergarten 2
KGA.Tezu- ka.01.002	130603_Tezuka_Asahi kindergarten 1
KGA.Tezu- ka.01.003	130603_Tezuka_Asahi kindergarten 3
KGA.Tezuka.01. PLAN	130827_Tezuka_Architects
KGA.Tezu- ka.02.001	130603_Tezuka_Fuji Kindergarten 1
KGA.Tezu- ka.02.002	130603_Tezuka_Fuji Kindergarten 2
KGA.Tezuka.02. PLAN	130827_Tezuka_Architects
KGA.Toyo.001	130603_Toyo Ito

URL	Anmerkungen
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/04/51689508b3fc4bdb4e0000 3a_infant-school-student-in-vereda-rueda-pizarro-arquitectos_foto_cubierta.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/04/51689722b3fc4bc7f90000 3d_infant-school-student-in-vereda-rueda-pizarro-arquitectos_diagram4png	
http://www.archdaily.com/359678/infant-school-student-in-vereda-rueda-pizarro-arquite ctos/516896dcb3fc4bc7f900003a_infant-school-student-in-vereda-rueda-pizarro-arquitectos_floor_plan-png/	Planvorlage
http://upload.wikimedia.org/wikipedia/commons/7/78/Kindertagesheim_ Rinnb%C3%B6ckstra%C3%9Fe_47.jpg	
http://www.oegfa.at/data/media/aaf_media/standard/2711.jpg	Planvorlage
http://archidose.org/wp/wp-content/uploads/2012/01/Jan12-09.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2011/08/1314739181-solid-032-o-8119-kuku.jpg	
http://www.architecturenewsplus.com/cdn/images/o/n/r/2/nr2pyrv.jpg	Planvorlage
http://www.flickr.com/photos/littlegray/8172245451/in/photostream/	
https://www.japlusu.com/sites/default/files/mnm1-4.jpg	
http://www.tezuka-arch.com/japanese/works/minamisanriku/img/11.jpg	
http://img.archilovers.com/projects/b_730_4b0fc1ec85a9408eaf0416a7bd21c3f6.jpg	Planvorlage
http://www.tezuka-arch.com/japanese/works/yamamoto/img/02.jpg	
http://www.tezuka-arch.com/japanese/works/yamamoto/img/08.jpg	
http://www.tezuka-arch.com/japanese/works/yamamoto/img/15.jpg	Planvorlage
http://www.toyo-ito.co.jp/WWW/Project_Descript/1990-/1990-p_10/2-800.jpg	

Code	Datum_Bildname
KGA.Toyo.PLAN	130827_Toyo_Ito&Associates_Architects
KGA.trans_ city.001	130518_Trans_city ZT gmbh
KGA.trans_city. PLAN	130827_trans_city_TCTZgmbh
KGA.Uchida.001	130518_Uchida Architect 2
KGA.Uchida.002	130518_Uchida Architect 1
KGA.Uchida.003	130518_Uchida Architect 3
KGA.Uchida. PLAN	130827_Uchida_Architect
KGA.Untertrifal- ler.01.001	130529_Dietrich_Untertrifaller_EGG
KGA.Untertrifal- ler.01.PLAN	130827_Dietrich/Ultertrifaller
KGA.Untertrifal- ler.02.001	130529_Dietrich_Untertrifaller_LUSTENAU
KGA.Untertrifal- ler.02.PLAN	130827_Dietrich/Ultertrifaller
KGA.vanden- Berk.001	130513_Mulders vanden Berk 2
KGA.vanden- Berk.002	130513_Mulders vanden Berk 1
KGA.vanden- Berk.PLAN	130827_Mulders vanden Berk
KGA.Vilalta.001	130518_Xavier Vilalta
KGA.Zahn.001	130513_Alexa Zahn-architects

URL	Anmerkungen
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTK-2kaBlvWy1kkmieGM-n16X4VwINdkuntjFTfzwhbPrwHI7fV	Planvorlage
http://www.trans-city.at/images/130225-KIP_4KEY.png	
http://www.trans-city.at/downloads/0020%20KIP%20130104%2072.pdf	Planvorlage/PDF S. 2
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/04/51682922b3fc4bf75b0000ad_t-nursery-uchida-architect-design-office_img_031.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/04/516828fbb3fc4bf57e0000ab_t-nursery-uchida-architect-design-office_img_011.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2013/04/51682b5cb3fc4bf57e0000b2 _t-nursery-uchida-architect-design-office_structure_axon.png	
http://www.archdaily.com/359474/t-nursery-uchida-architect-design-office/51682b4cb3fc4bf57e0000b1_t-nursery-uchida-architect-design-office_plan_100e-t-nursery-png/	Planvorlage
http://www.dietrich.untertrifaller.com/projekt/kindergarten-egg	
http://www.dietrich.untertrifaller.com/projekt/kindergarten-egg	Planvorlage
http://www.dietrich.untertrifaller.com/projekt/kindergarten-lustenau	
http://www.dietrich.untertrifaller.com/projekt/kindergarten-lustenau	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/02/1265211301-concept-diagrams.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/02/1265211220-roel-backaert-0676-528x351.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/02/1265211376-floor-plan-528x222.jpg	Planvorlage
http://ad009cdnb.archdaily.net/wp-content/uploads/2009/01/47649473_outside-night-view.jpg	
http://ad009cdnb.archdaily.net/wp-content/uploads/2010/01/1263410173-044-a05.jpg	

Code	Datum_Bildname
KGA.Zahn. PLAN.01	130827_Alexa Zahn-architects
KIGA.002	130828_Rudolf Steiner-Schule
KIGA.003	Quelle ohne Abbildung. Aritkel "Offener Kindergarten"
LIG.001.1	130101_LIG.001.1.jpg
LIG.002.1	130101_LIG.002.1.jpg
OIB.000	130101
ROD.001	
TIMCO.001	130101
WKO.001	130101

URL	Anmerkungen
http://www.archdaily.com/299131/kindergarten-and-after-school-care-center-alexa-zahn-architects/50b639c6b3fc4b5da800000d_kindergarten-and-after-school-care-center-alexa-zahn-architects_131112_firstfloor_monochrom_200-png/	Planvorlage
http://www.anthroposophie.net/bilder/Heidenheim_saal.jpg	
http://www.proholz.at/zuschnitt/37/offener-kindergarten/	Artikel. Zuschnitt 37: Im Kindergarten. März 2010, Seite 18. Gabu Heindl
http://www.pl.all.biz/img/pl/catalog/216823.jpeg	
http://www.stegplatten.info/image/inhalte/stegplatten.jpg	
http://www.oib.or.at/	Österreichisches Institut für Bautechnik
Unterlage übermittelt durch die Thyssen Austria	Prüfzeugnis
http://www.timco.ch/	statische Vorbemessung
https://www.google.at/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDoQFjAB&url=http%3A%2F%2Fportal.wko.at%2F%3F249647&ei=CRcjUqyjJ8XHsgbj9ICABQ&usg=AFQjCNGo3B1ALSSgNA4KkWAA0928rHcSNQ&bvm=bv.51495398,d.Yms	SONDERTRANSPORTE IN ÖSTERREICH

Abbildungen ohne Quellenangabe stammen von der Autorin (Irrtümer vorbehalten)

verwendete **Abkürzungen**

HBV ... Holz-Beton-Verbund BSP ... Brett-Sperr-Holz

OIB ... Österreichisches Institut für Bautechnik

RW ... RIEGELWAND

Abkürzungen in den beiliegenden Planunterlagen sind den Planunterlagen zu entnehmen.

> verwendetete **Software**

Adobe Indesign - Studentenversion
Adobe Photoshop - Studentenversion
AutoCAD - Atelierlizenz
GEQ - Übungsversion
openoffice - Open Source Programm
Rhino - Studentenversion
Thunderbird - Open Source Programm
Timco - Statische Vorbemessung. Online-Tool
Microsoft Windows Betriebssystem

Danksagung

Für Ihre Unterstützung bedanke ich mich bei:

Christian Aulinger

Friedrich Achleitner

Gabu Heindl

Helmut Dietrich

Helmut Krapmeier

Herbert Anreiter

Karl Torghele

Klaus Pfeifer

Klaus Petraschka

Kurt Pock

Manuel Vogler

Marie Theres Okresek

Martin Teibinger

Michael Schluder

Michael Wildmann und seinem Team

Oskar Pankratz

Peter Kneidinger

Philip Lutz

Roland Gnaiger

Sylvia Polleres

Thomas Zelger

Tobias Baldauf

Veronika Müller

meiner Mutti

und - falls ich jemanden vergessen haben sollte: Danke nicht genannte Unterstützer/in!

Nachwort

Als ich mit der vorliegenden wissenschaftlich-künstlerischen Arbeit begonnen habe war ich mir - intuitiv - sicher, auf die Unterstützung der österreichischen Holz-Beton-Verbund-Industrie zählen zu können. Wie sich bald herausgestellt hat, war meine Intuition jene einer Person, die es gewohnt ist im künstlerisch-kreativem Umfeld Information freizügig zu teilen um dem Anspruch höchstmöglicher Innovation auf allen (beiden) Seiten gerecht zu werden.

Die Welt des Marktes tickt in dieser Hinsicht leider völlig anders, selbst wenn dieser Markt sich Nachhaltigkeit auf die Webpage geschrieben hat.

Auf eine Anfrage bei der Cree GmbH, deren Unternehmensgegenstand die Entwicklung, die Herstellung und der Vertrieb von Holzbausystemen aller Art, insbesondere von holzbasierten Hochhausbausystemen ist (Geschäftsführer Hubert Rhomberg) wurde mir folgene Anwort per Email übermittelt:

"Herr Becker hat mich über Ihr Anliegen informiert und wir haben das intern besprochen. Leider kann ich Ihnen keine positive Nachricht geben.

Aus Gründen des Know-How-Schutzes geben wir generell keine detaillierten Daten an Dritte ohne ein konkretes Umsetzungsprojekt weiter. Gerne können Sie alle bereits veröffentlichten Daten und Berücksichtigung der Urheberrechte frei verwenden. Besuchen Sie unsere Website, Youtube oder Flickr, dort erhalten Sie umfassendes Material zu unserem Unternehmen, unserer Philosophie, sowie auch Einiges an technischen Informationen.

Ich bitte um Kenntnisnahme und verbleibe.

Mit freundlichen Grüßen / Yours faithfully Jürgen Blacha Head of Operations

Cree GmbH Färbergasse 17b 6850 Dornbirn AUSTRIA

T +43 (0) 5574 403-154 M +43 (0) 664 8280753 juergen.blacha@creebyrhomberg.com http://www.creebyrhomberg.com FN 354044 d, LG Feldkirch, ATU66033936

Übrigens:

Das "Demonstrationsprojekt LifeCycle Tower - energieeffizientes Holz-Hybridhochhaus in Systembauweise" - Projektbeteiligte: Rhomberg Bau GmbH, Architekten Hermann Kaufmann ZT GmbH, Wiehag GmbH, Arup GmbH, TU Graz - wurde im Rahmen des Programms "Haus der Zukunft" durch das bmvit - Bundesministerium für Verkehr, Innovation und Technologie - gefördert: (siehe www.hausderzukunft. at/results.html/id6947)

Hubert Rhomberg war Vortragender des Lehrganges "überholz" an der Kunstuniversität Linz zum Thema "Hochhaus Holz" am 16.05.2012.

Open Access Open Content

Aus diesem Anlaß ist diese Arbeit der Idee des öffentlichen und freien Zugangs zu Information im Allgemeinen, zu wissenschaftlicher Literatur und anderen Materialien im Speziellen gewidmet.

Viel Spaß beim Durchlesen!

Irene Prieler Wien - Linz, den 30.09.2013